
JavaScript Affogato: Programming a Culture of
Improvised Expertise

Brian Lennon

2018

Author’s postprint version, preceding journal copy editing but otherwise
identical to publisher’s PDF.

Published as: Lennon, Brian. “JavaScript Affogato: Programming a Culture of
Improvised Expertise.” Configurations 26.1 (2018): 47–72. © 2018 The Johns
Hopkins University Press.

Abstract

This essay attempts a philological, meaning a both technically and socially
attentive historical study of an individual computer programming language,
JavaScript. From its introduction, JavaScript’s reception by software devel-
opers, and its importance in web development as we now understand it, was
structured by a continuous negotiation of expertise. I use the term “improvised
expertise” to describe both conditions for and effects of the unanticipated devel-
opment of JavaScript, originally designed for casual and inexpert coders, into a
complex of technical artifacts and practices whose range and complexity of use
has today propelled it into domains previously dominated by other, often older
and more prestigious languages. “Improvised expertise” also marks the condi-
tions for and effects of three specific developmental dynamics in JavaScript’s
recent history: first, the rapidly accelerated development of the language itself,
in the versions of its standard specification; second, the recent, abruptly emerg-
ing, yet rapid growth of JavaScript in server-side networking, data processing,
and other so-called back end development tasks previously off limits to it; third,
the equally recent and abrupt, yet decisive emergence of JavaScript as the dom-
inant language of a new generation of dynamic web application frameworks and
the developer toolchains or tooling suites that support them.

1

http://muse.jhu.edu/article/685007
http://muse.jhu.edu/article/685007


Introduction

2016 was an inconspicuously transitional year for the information space once
commonly referred to as The World Wide Web. Those attentive to linguistic
usage will recall that the 2016 edition of The Associated Press Stylebook and
Briefing on Media Law released in June recommended that the words “internet”
and “web” no longer be written with initial capital letters,1 in a sign that the
propriety marked by their referents’ novelty had finally settled, or worn off. For
those more attuned to matters of technical infrastructure, what may come to
mind instead is the announcement by Oracle Corporation that its Java web
browser plugin would be deprecated in the forthcoming ninth version of its
Java Development Kit (JDK), a platform for writing and packaging software
applications in the Java programming language.2 Taking these two real, if
lesser milestones together, it seems safe to say that for anyone who remembers
the original promise made for Java applets as a common WWW technology,
at their moment of emergence in the mid-1990s, this was a chapter of recent
technological and cultural history quietly coming to an end.3

To be sure, Oracle’s hand had been forced by Microsoft, Google and Apple, who
had either reduced Java plugin support in their browser products or removed
it entirely. And yet embedded Java applets had long since become a legacy
technology, still useful for some computationally intensive graphical visualiza-
tion tasks (disproportionately in scientific applications), but no longer in wide
use outside that domain. Whether or not they are old enough to remember the
role originally imagined for Java in the browser, in particular, most of those
who design web sites and program web applications for a living today would be
unlikely to regret their eclipse. Even before the emergence of personal data se-
curity as a substantive public issue in 2012, Java applets presented grave, often
intractable security risks that web developers had had to learn how to manage,
or ignore. A more general reason for the irrelevance of Java browser applets by
2016 was a historical one, linked to changes in the profile of the Java program-
ming language and Java programmers in the software development industry as
a whole. When Fredrick P. Brooks, Jr. chose for the seventh chapter of The
Mythical Man-Month: Essays on Software Engineering (1975) the title “Why
Did the Tower of Babel Fail?,” he was reflecting on the biblical story of Babel as
a fable of engineering (the hubristic or merely presumptuous construction of a
tower tall enough to reach heaven), rather than a fable of language (divine pun-
ishment imposed in the form of linguistic difference and permanently impaired

1Davey Alba, “The AP Finally Realizes It’s 2016, Will Let Us Stop Capitalizing ‘Internet’,”
Wired, April 2016, http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-
capitalizing-internet/.

2Tom Warren, “Oracle’s Finally Killing Its Terrible Java Browser Plugin,” The Verge, Jan-
uary 2016, http://www.theverge.com/2016/1/28/10858250/oracle-java-plugin-deprecation-
jdk-9.

3Some readers may also have thought of the acquisition of Yahoo Inc. by Verizon Commu-
nications, announced on July 25, 2016, several months after an initial draft of this essay was
completed.

2

http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/
http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/
http://www.theverge.com/2016/1/28/10858250/oracle-java-plugin-deprecation-jdk-9
http://www.theverge.com/2016/1/28/10858250/oracle-java-plugin-deprecation-jdk-9


communication).4 Nevertheless, The Mythical Man-Month, the first widely read
and still the most celebrated reflection on managing large software projects, was
also an informal study of communication, not excluding the metaphorized com-
munication that a software programmer struggles to achieve with a machine.

The present essay is an essay about the negotiation of technical expertise, specifi-
cally the technical expertise involved in software programming, and in particular
that involved in programming web sites and applications — that is, what is to-
day called “web development.” I take my bearings from the present historical
moment, understood as an interval of continued economic recession (or if one
insists, “uneven recovery”) shaped by both economic and political investment
in “coding” instruction as job retraining for unemployed and underemployed
U.S. blue- and white-collar workers alike. In recent years sociologically oriented
cultural studies scholars like Adrian Mackenzie have produced valuable work on
cultures of software development, work that is laudable for being simultaneously
technically informed and socially focused.5 While it has been receptive to such
research in so-called software studies, scholarship in humanities disciplines has
not displayed a proportionate interest in the specifically social and cultural di-
mensions of the specifically linguistic history of computing, and this is the case
especially where individual programming languages and their development and
usage cultures are concerned.6 The broad exception is, of course, the histori-
ography of computing, and science and technology studies more broadly. But
even here, Mark Priestley is surely right to suggest that early, purely technical
histories of programming languages have been followed by socially attentive his-
tories of software as a general object and domain, leaving individual languages
behind as objects of potentially equally both technically and socially focused
study.7

Granting that no duplication of the early, narrow technical histories is neces-
sary — they were meticulous, if unsurprisingly disproportionately anecdotal in

4See Frederick P. Brooks Jr., The Mythical Man-Month: Essays on Software Engineering,
Anniversary edition (Reading, MA: Addison-Wesley, 1995).

5See Adrian Mackenzie, Cutting Code: Software and Sociality, Digital Formations, v. 30
(New York: Peter Lang, 2006).

6A partial exception is Nick Montfort et al., 10 PRINT CHR$(205.5+RND(1));:GOTO
10, Computer software Studies (Cambridge, MA: MIT Press, 2013), seven of the eleven main
chapters of which focus on the BASIC programming language. Only one of these seven
chapters could reasonably be called a study of the BASIC language, however, with the re-
maining six devoted to explaining very simple command sequences and very brief programs
to readers who are assumed to have no knowledge either of BASIC or any other program-
ming language. The book’s eighth main chapter, titled simply “BASIC,” does discuss lan-
guage design and syntax variation in some detail, but is otherwise given over to reviewing
BASIC’s implementation and usage history, again for a reader assumed to lack elementary
knowledge of the subject. As of this writing, 10 PRINT CHR$(205.5+RND(1));:GOTO
10 is the only book-length publication to have emerged from “critical code studies,” an un-
dertaking that Mark C. Marino, “Critical Code Studies,” Electronic Book Review, Decem-
ber 2006, http://www.electronicbookreview.com/thread/electropoetics/codology attempted
to distinguish from “software studies” more than a decade ago.

7Mark Priestley, A Science of Operations: Machines, Logic and the Invention of Program-
ming, History of Computing (New York; London: Springer, 2010), 2.

3

http://www.electronicbookreview.com/thread/electropoetics/codology


character8 — how can we describe the humanities research space separating an
early historiography of programming languages that is as old as the Fortran,
Lisp, Algol, and Cobol languages themselves (which originates, that is to say,
in the late 1950s), and recent social histories of the software concept as Martin
Campbell-Kelly’s From Airline Reservations to Sonic the Hedgehog: A History
of the Software Industry (2004)?9 A clue is to be found, I would suggest, in an
essay by William Paulson titled “For a Cosmopolitical Philology: Lessons from
Science Studies,”10 in so far as in that essay, published in 2001, Paulson sug-
gested the value of bringing science and technology studies (STS) scholarship
into contact with an older literary humanist tradition of philology: a tradi-
tion whose methodologies were globally comparative and multilingual, whose
mode was the study of texts in multiple languages (which required intensive
study of the languages themselves), and which was rooted in a specific Western
intellectual-historical tradition, the tradition of secular or historical humanism.
If we set aside this latter tradition (one that STS scholars would surely under-
stand themselves as sharing with “philologists,” that is, with language and liter-
ature scholars), philology’s characteristic mode of focus, grounded as it is in the
mandates of linguistic specificity, even incommensurability, cannot be described
as a great strength or even necessarily a normal characteristic of scholarship in
STS.

From a position close to Paulson’s own, then, one might invite software studies
and so-called critical code studies, as well as STS itself, to establish an as-yet
imagined contact with philology. What, we might ask, would a philological study

— that is, a minimally both technically and socially oriented historiography —
of a specific computer programming language look like? For an example of how
this question might be posed within the disciplinary context of the information
sciences, rather than within that of the humanities (as I shall do here), we can
consult recent work like Andrew J. Ko’s “What Is a Programming Language,
Really?” “In computing,” Ko remarks, “we usually take a technical view of
programming languages (PL), defining them as formal means of specifying a
computer behavior. This view shapes much of the research that we do on PL,
determining the questions we ask about them, the improvements we make to
them, and how we teach people to use them. But to many people, PL are not
purely technical things, but socio-technical things.”11 Still, essays like Ko’s are

8See Jean E. Sammet, Programming Languages: History and Fundamentals (Englewood
Cliffs, N.J.: Prentice-Hall, 1969), Donald E. Knuth and Luis Trabb Pardo, “The Early Devel-
opment of Programming Languages” (Stanford, CA, August 1976), Richard L. Wexelblat, ed.,
History of Programming Languages (New York: Academic Press, 1981), Thomas J. Bergin
and Richard G. Gibson, eds., History of Programming Languages II (New York: ACM Press;
Addison-Wesley, 1996), Thomas J. Bergin, “A History of the History of Programming Lan-
guages,” Commun. ACM 50, no. 5 (May 2007): 69–74, doi:10.1145/1230819.1230841.

9See Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History
of the Software Industry, History of Computing (Cambridge, Mass.: MIT Press, 2004).

10William Paulson, “For a Cosmopolitical Philology: Lessons from Science Studies,” Sub-
Stance 30, no. 3 (January 2001): 101–19, doi:10.1353/sub.2001.0033.

11Andrew J. Ko, “What Is a Programming Language, Really?” (ACM Press, 2016), 32,
doi:10.1145/3001878.3001880.

4

https://doi.org/10.1145/1230819.1230841
https://doi.org/10.1353/sub.2001.0033
https://doi.org/10.1145/3001878.3001880


quite remarkably few and far between, in the domain of the technical sciences
as much as in the social sciences and the humanities — and often, as in this
particular case, perhaps unavoidably perfunctory. Regardless of how we choose
to explain it, Ko’s conclusion in 2016 that “[o]ther agendas, particular those
that probe the human, social, societal, and ethical dimensions of PL, are hardly
explored at all”12 is certainly warranted.13

Java and JavaScript

In December 1995, when Sun Microsystems and Netscape Communications is-
sued a joint press release announcing “JavaScript, the Open, Cross-Platform
Object Scripting Language for Enterprise Networks and the Internet,”14 Sun’s
Java programming language was already well on its way to achieving the virtu-
ally uncontested market dominance, comparative prestige, and privilege as an
instructional language that it would enjoy for a decade and more. Though Java
1.0, the first public release, had appeared only the same year, Sun’s promise
of true platform-neutrality and portability for the Java Runtime Environment
was immediately attractive to enterprise software developers tiring of the de-
mands placed on them by the C and C++ languages then widely in use. Java
promised to moderate some of the complexity entailed by the access both C
and C++ provided to low-level memory management, as well as the specific
complexities introduced by C++ imagined as “C with classes,”15 without re-
ducing the power and expressivity those languages offered to enterprise systems
programmers specifically. Though it was initially designed for the lightweight
hardware application of embedding in programmable consumer appliances, and
only later adapted for serving and embedding in HTML pages, Java was very
much a professional’s language, restrictive in its requirements for data types
(being both statically and strongly typed) and in its promotion of a single pro-
gramming style, the object-oriented programming (OOP) paradigm it would
help popularize, as well as in the verbosity that both these forms of restriction
produced. Presented as a professional alternative to both C and C++ rather

12Ko, “What Is a Programming Language, Really?” 33.
13The “politico-social history of Algol” promised by R. W. Bemer, “A Politico-Social History

of Algol (with a Chronology in the Form of a Log Book),” in Annual Review of Automatic
Programming, Annual Review of Automatic Programming 5 (Pergamon, 1969), 151–237, for
example, turns out to be a bibliography with abridged extracts from various primary sources
(letters, meeting minutes, committee resolutions, and so on), many relating to the famously
fractious negotiations of the specification of Algol 60 in particular. It is to that history of
conflict to which the term “politico-social” presumably refers; still, this document is entirely
descriptive and offers no analysis whatsoever.

14“Netscape and Sun Announce Javascript, the Open, Cross-Platform Object Scripting Lan-
guage for Enterprise Networks and the Internet,” December 1995, https://web.archive.org/
web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html.

15Designed by Bjarne Stroustrup while working at AT&T in the late 1970s, C++ was
originally called “C with Classes,” marking Stroustrup’s intention to “superset” the C lan-
guage (that is, to remain completely compatible with it) while also improving it. See
Bjarne Stroustrup, “Bjarne Stroustrup’s FAQ,” Bjarne Stroustrup’s Homepage, February 2016,
http://www.stroustrup.com/bs_faq.html.

5

https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
http://www.stroustrup.com/bs_faq.html


than a radical departure from either, Java’s relative ease of use included no
special claims of approachability for inexperienced coders or non-professionals.

JavaScript was different. Sun and Netscape’s press release used the word “com-
plementary” three times to describe JavaScript’s relation to Java: “JavaScript
as a complement to Java” (in the document’s subtitle); “The JavaScript lan-
guage complements Java”; “[JavaScript is] complementary to and integrated
with Java.” Java, the press release emphasized, “is used by programmers to cre-
ate new objects and applets,” while JavaScript “is designed for use by HTML
page authors and enterprise application developers to dynamically script the
behavior of objects running on either the client or the server.” If the mention
of “enterprise application developers” and server-side applications suggested a
place for JavaScript in the established industry of Java development, the sen-
tence that followed better illuminates how HTML page authors were imagined,
and how they imaged JavaScript’s complementing of Java in a different sense.
“JavaScript is analogous to Visual Basic,” it read, “in that it can be used by
people with little or no programming experience to quickly construct complex
applications.”16

From its introduction, JavaScript’s reception by software developers, and its
importance in “web development” as we now understand it (as an area of either
software development or graphic design, depending on whom one asks), was
structured by a continuous negotiation of expertise. Especially today, it is rare
to encounter an introductory tutorial or textbook for beginners that fails to
pause to disambiguate JavaScript from Java before undertaking to cover even
the basics.17 Most often, and especially today, the motive for such disambigua-
tion is less to clarify the historical relationship of these two languages than to
clear a space for JavaScript by separating it from association with Java — specif-

16“Netscape and Sun Announce Javascript, the Open, Cross-Platform Object Scripting Lan-
guage for Enterprise Networks and the Internet.”

17See, for example, Jeremy McPeak and Paul Wilton, Beginning Javascript, 5th Edition,
5th edition (Indianapolis, IN: John Wiley; Sons, 2015), 2: “Perhaps this is a good place to
dispel a widespread myth: JavaScript is not the script version of the Java language. In fact,
although they share the same name, that’s virtually all they do share. Particularly good
news is that JavaScript is much, much easier to learn and use than Java.” Even some classic
books on JavaScript written for developers already expert in other languages, or newer books
who address the same kind of reader, frame the issue similarly. In JavaScript: The Definitive
Guide, widely considered an authoritative comprehensive study of JavaScript, David Flanagan
begins thus: “The name ‘JavaScript’ is actually somewhat misleading. Except for a superficial
syntactic resemblance, JavaScript is completely different from the Java programming language”
David Flanagan, Javascript: The Definitive Guide, 6th ed (Beijing ; Sebastopol, CA: O’Reilly,
2011), 1. In the introductory volume of a rigorous and well-received multi-volume study of
contemporary JavaScript, Kyle Simpson writes, “[T]he name [JavaScript] is merely an accident
of politics and marketing. The two languages are vastly different in many important ways.
‘JavaScript’ is as related to ‘Java’ as ‘Carnival’ is to ‘Car’ ” Kyle Simpson, Up & Going,
First Edition, You Don’t Know JS (Sebastopol, CA: O’Reilly Media, 2015), vii. Douglas
Crockford reminds us of Java and JavaScript’s historical concurrency and doesn’t exaggerate
their unrelatedness, but has little to say about the issue beyond one sentence: “When Java™
applets failed, JavaScript became the ‘Language of the Web’ by default” Douglas Crockford,
Javascript: The Good Parts (Beijing: O’Reilly, 2008), 1.

6



ically, with Java’s verbosity and its object-oriented programming paradigm, and
perhaps from Java’s association with enterprise application programming, the
drudge work of software engineering — and its diminished presence in the more
flexible and experimental startup culture of the 2000s and 2010s, as well. While
such gestures are understandable at a moment when Java’s reputation is more
or less clearly in decline,18 they can obscure the historical entwinement of these
two languages, with consequences that are regrettable from any but the most
purely practical or instrumental perspective.

I use the term “improvised expertise” to describe both conditions for and effects
of the unanticipated development of JavaScript from a mere complement to Java,
designed for casual and inexpert programmers, into a language whose range and
complexity of use has now propelled it ahead of Java in some ways, even (by
some measures, in some domains) where Java once dominated. My argument is
that such “improvised expertise” separates JavaScript at least partly from other,
otherwise similar experiments in making programming accessible to non-experts,
from the original BASIC language, developed as an instructional language at
Dartmouth College in the 1960s, onward.

The concept of improvised expertise also encapsulates the conditions for and
effects of three specific developmental dynamics in JavaScript’s recent history.
First of these is a rapid acceleration in development of the language itself, now
occurring at such a pace that ECMAScript, the specification on which JavaScript

18In response to such claims, Java programmers often point to Java’s leading position
in the TIOBE Programming Community Index compiled by the software services provider
TIOBE Software BV, or similar rankings aggregators like the PYPL Popularity of Program-
ming Language Index — leaving unmentioned such rankings’ historical “trend” indexes for
Java’s position, which are frequently negative. See Robert McMillan, “Is Java Losing Its
Mojo?” Wired, January 2013, http://www.wired.com/2013/01/java-no-longer-a-favorite/
and David Cassel, “Evolve or Die: Java, C++ Confront Newcomers on the TIOBE Index,” The
New Stack, March 2016, https://thenewstack.io/evolve-die-popular-programming-languages-
confront-newcomers-tiobe-index/, both of whom argue that TIOBE data itself shows Java’s
position “slipping” and “trending down” (McMillan also quotes Paul Jansen, managing direc-
tor of TIOBE Software, as stating that “Java is falling down”). In any case, at any point in the
history of a programming language past the point of its initial adoption, a language’s reputa-
tion — as expressive or otherwise pleasant to use, as adaptable to ongoing hardware evolution,
as usable in solving newer computational problems — may diverge from its market share or
other measures of usage quite radically, if only because once they are in place, large industrial
software infrastructures are kept operating for as long as possible. It is the incongruence of
Java’s reputation with its market share, today, that animates non-meaningless if possibly glib
comparisons of Java to Cobol, such as that made by Bill Snyder, “Java Is Becoming the New
Cobol,” InfoWorld, December 2007, http://www.infoworld.com/article/2650254/application-
development/java-is-becoming-the-new-cobol.html. The inclusion in Java version 9 of a
REPL (Read-Evaluate-Print-Loop) feature for exploratory programming is a concession to
the encroachment on Java’s position of both scripting languages and newer functional pro-
gramming languages, languages in both categories of which have offered REPL-type features

— whose purpose and usage are fundamentally incompatible with Java-style object oriented
programming — for many decades. Arguably, the rise of Scala, Clojure, and other languages
designed to run on the Java Virtual Machine (JVM) and provide access to Java standard
libraries, but otherwise breaking either partly or completely with Java’s imperative syntax
and its enforcement of an object-oriented paradigm, marks the endurance of the JVM as a
platform but the eclipse of Java as a (paradigmatic) language.

7

http://www.wired.com/2013/01/java-no-longer-a-favorite/
https://thenewstack.io/evolve-die-popular-programming-languages-confront-newcomers-tiobe-index/
https://thenewstack.io/evolve-die-popular-programming-languages-confront-newcomers-tiobe-index/
http://www.infoworld.com/article/2650254/application-development/java-is-becoming-the-new-cobol.html
http://www.infoworld.com/article/2650254/application-development/java-is-becoming-the-new-cobol.html


is based, shifted in 2015 from using traditional ordinal version numbers for edi-
tions to a year-based designation (so that the official name of ECMAScript
version 6 is now ECMAScript 2015, with new editions to be released yearly
going forward). Second is the recent abrupt emergence and extremely rapid
growth of JavaScript in server-side networking, data processing, and other so-
called back-end development tasks, a domain traditionally handled separately
from the user-facing, design-oriented front-end site development that Sun and
Netscape’s 1995 press release suggested would be JavaScript’s main use case.
Third is the equally recent and abrupt, yet decisive emergence of JavaScript as
the dominant language of a new generation of dynamic web application frame-
works (principally Ember.js, AngularJS, and Facebook’s React, but also Meteor,
Express, and others) and the developer tooling suites that support them, in a
partial displacement of the Ruby language-based Rails framework popularized
during the late 2000s.

This rapid, largely unanticipated growth in JavaScript’s range of application
and its general importance in the software industry has even seen it enter ele-
mentary computer science instruction as language of preference, in some cases
displacing Python (which itself has selectively displaced Java) in the classroom.
Here, the phrase “improvised expertise” marks a paradox: while core JavaScript
remains a small, approachable language when abstracted from its main domains
of application, web site and application development, using JavaScript profes-
sionally in those domains today is virtually impossible without very substantial,
ongoing study of the language’s advanced features and support for multiple
programming paradigms, as well as of the new JavaScript-based development
frameworks and tooling suites, the frenetic development pace of which virtually
ensures that they will be replaced by other, newer frameworks and tools before
they emerge from beta status and a commensurate level of documentation. This
ensures that the learning curve for new professional JavaScript developers — not
to mention the non-programmers JavaScript was originally designed to serve —
will be very, very steep indeed, and it suggests that sooner or later, JavaScript’s
improvised expertise will have some part to play in the disappointments of
the latest push for “computer science for all” and other economic management
schemes that conflate coding skills with basic literacy (that is, reading and writ-
ing in human languages) and with basic so-called computer literacy, as well
(that is, using both general and domain-specific pre-packaged software applica-
tions effectively). Where JavaScript’s history as a programming language is in
many ways a routine, if interesting case of simplification producing complexity,
the logic of “coding for all” and its variants are arguably repetitions of magi-
cal thinking about the management of complexity in software production itself,
with these two dynamics converging in the historical present.19 In that sense,

19The difficulties of larger-scale software production are documented by a management-
oriented literature stretching back to the 1970s. The canonical text, mentioned previously, is
Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering (1975).
See Brooks, The Mythical Man-Month, along with Robert N. Britcher, The Limits of Software:
People, Projects, and Perspectives (Reading, MA: Addison-Wesley, 1999), Scott Rosenberg,
Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and One Quest

8



what we call “JavaScript” is not just a programming language, and not just a
collection of environments and tooling supporting a programming language, in-
cluding specifications and other documentation, implementations, and primary
and secondary program artifacts (from development tools and frameworks to
specific interpreters or “engines,” compilers and transpilers, and other software
components embedded in a browser or server applications). JavaScript can, at
least at the moment and for the near term, be understood also as an assembly
of broader technical and technical-historical dynamics, labor and management
practices and arrangements, and discourses about education, job training, and
production that privilege technical expertise, but also seek to generalize it in
and for a demarcatable historical interval.

System and scripting languages

The first edition of ECMA-262 (ISO/IEC 16262), Ecma International’s specifi-
cation for ECMAScript, a standard for JavaScript, was published in June, 1997.
Edited by Guy L. Steele, Jr., it described ECMAScript as a scripting language,
defining the latter as “a programming language that is used to manipulate,
customize, and automate the facilities of an existing system,”20 rather than be-
ing used to create a new system. It acknowledged that the “existing system”
of ECMAScript’s original design was a World Wide Web page browser and a
Web-based client-server architecture more generally, but also insisted that the
ECMAScript specification had been written with a variety of possible host envi-
ronments in mind.21 The first edition of ECMA-262 was equally pointed, and in
some ways more specific, in emphasizing that “[a] scripting language is intended
for use by both professional and non-professional programmers, and therefore
there may be a number of informalities and built into the language.”22 The his-
tory of what we now call higher-level programming languages is of course a his-
tory of efforts to make programming less arduous for professional programmers,
as operation codes provided mnemonics for instructions that could otherwise
only be expressed in binary, octal, or other numeric form, followed by what we
now call programming languages providing another, platform-independent layer
atop the hardware-specific operation codes, a layer still more remote from nu-
meric encoding and apparently closer to natural language (then and still today,
the English language specifically).

Efforts to make programming accessible to non-professionals did not, as one
for Transcendent Software (New York: Three Rivers Press, 2008), Gerald M. Weinberg, The
Psychology of Computer Programming, Silver anniversary edition (New York: Dorset House,
1998), and, for useful counterpoint, Ellen Ullman, Close to the Machine: Technophilia and
Its Discontents (New York: Picador / Farrar, Straus,; Giroux, 2012).

20“ECMAScript: A General Purpose, Cross-Platform Programming Language. Stan-
dard Ecma-262, June 1997” (ECMA, June 1997), 1, http://www.ecma-international.org/
publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf.

21“ECMAScript,” 2.
22“ECMAScript,” 1.

9

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf


might expect, lag the effort to make programming more convenient for profes-
sionals; rather, they were coterminous and developed in parallel, not without
significant overlap. At Dartmouth College, John Kemeny had devised DAR-
SIMCO (DARtmouth SIMplified COde), “Dartmouth’s first crack at a simple
computer language,”23 a year before the appearance in 1957 of FORTRAN,
the first widely adopted and lasting example of a higher-level or “third gener-
ation” language.24 “Dartmouth students,” Thomas E. Kurtz recalled in 1978,
“are interested mainly in subjects outside the sciences,” and most of the future
“decision makers of business and government” among them were not science
students.25 The rationale for Dartmouth BASIC, or “Beginner’s All-Purpose
Symbolic Instruction Code,” was to provide such students with experience in
writing programs (rather than merely learning about computer use) without
having to understand operation codes “or even FORTRAN or ALGOL” (the
latter another higher-level language developed in the 1950s) which Kurtz and
his colleagues considered “clearly out of the question. The majority would balk
at the seemingly pointless detail.”26 But the growth of Dartmouth BASIC into
an entire family or class of languages represented its dissemination not only as
an instructional language, but in some lines of development (such as that which
produced Microsoft’s Visual Basic) as “a production programming language for
professionals” as well.27

Today, terminological usage more or less clearly distinguishes “scripting” lan-
guages from “system programming” languages. System programming languages
like C and C++ were designed to abstract away much of the detail of assembly-
language programming (that is, programming in operation codes) while still
leaving the programmer facilities for manually allocating and deallocating mem-
ory and thus staying “close to the metal,” as programmers like to say, while
enjoying the benefits of higher-level abstraction where that was preferred (for
example, in syntax for iteration, branching and other control structures, func-
tion calls, and creating and managing collections of items of data). Managing
memory efficiently involves distinguishing clearly among different data types
(primarily, between mathematical and textual data types) as one makes use of
them, so that no more memory than is needed is allocated for storing an item of

23Thomas E. Kurtz, “BASIC Session,” in History of Programming Languages, ed. Richard
L. Wexelblat (New York: Academic Press, 1981), 516.

24The most widely used term in both professional software development and the discipline
of computer science is “higher level language,” a spatial metaphor used to describe abstraction
from the “lower” level of hardware operation codes. Academic researchers use the historical
metaphor of the generation in a similar, if perhaps also more sensible way: a first genera-
tion of purely numerically represented instructions (“machine code”) is followed by a second
generation of mnemonic abbreviations (“assembly language”), followed in turn by compiled,
hardware-independent algebraic syntaxes and keywords and phrases in the English language
(“programming language” as we use the term today). The classification includes a fourth
and a fifth generation, which is beyond my purview here. See James Martin, Application
Development Without Programmers (Englewood Cliffs, N.J: Prentice-Hall, 1982).

25Kurtz, “BASIC Session,” 518.
26Kurtz, “BASIC Session,” 518.
27Kurtz, “BASIC Session,” 547.

10



data, and compilers for system programming languages typically enforce such
discipline in the programmer — for example, by refusing to compile a work-
ing executable otherwise. Scripting languages, by contrast, abstract away and
automate both data typing and memory allocation and deallocation, for the
convenience of the programmer. This is partly because they they can take for
granted the presence of an underlying system programming language and its
libraries, for whose components they serve as a kind of adhesive or connective
tissue, and in which they themselves are implemented (that is, the interpreter
that provides a scripting language with its execution environment is itself a
system-level language program).

Since the 1990s, however, various factors including the accelerating sophistica-
tion of hardware and innovations in programming language design have eroded
some difference in the performance of scripting languages relative to system
programming languages, at least in specific environments and for specific ap-
plications, and significant gains have arguably been made in some measures
of programmer productivity. The economy of expression made possible once
memory allocation and data typing is abstracted away can be fairly dramatic.
If code in a system programming language like C is three to six times shorter,
in countable individual instructions, than its equivalent in assembly language
code,28 the same instructions in a scripting language like Python might be half
as long as their equivalent in C, C++, or Java syntax, and depending on the
task possibly much shorter than that.

Other contexts

Although it took nearly two decades, it was JavaScript, rather than Java itself
that made good on the promise of programmable Web pages and the browser
application as a distributed multi-platform environment. As HTML-based Web
publication promised to disrupt local monopolies of print publishers, JavaScript
promised inexpert programmers access to a scriptable environment, while Java
was to do the heavier lifting. In one of many interesting early formulations,
the Web was imagined as a “shell” for interactive application development, by
analogy with the AI-oriented “expert system” shells developed for use with Lisp
and Prolog and marketed for rapid application prototyping in Java and other
languages.29 But the popularity of the Web was also used to justify the teaching
of JavaScript to novices and as a “precursor to Java.”30

28J.K. Ousterhout, “Scripting: Higher Level Programming for the 21st Century,” Computer
31, no. 3 (1998): 24, doi:10.1109/2.660187.

29See Alison Lee and Andreas Girgensohn, “Developing Collaborative Applications Using
the World Wide Web ”Shell”” (ACM Press, 1997), 144, doi:10.1145/1120212.1120314.

30See Robert Ward and Martin Smith, “Javascript as a First Programming Language
for Multimedia Students,” ACM SIGCSE Bulletin 30, no. 3 (September 1998): 249–53,
doi:10.1145/290320.283557, 249: “The World-Wide Web is increasingly influencing the teach-
ing of Computing Science and associated subjects, and Web-related programming topics are
now appearing in many syllabuses. Whilst in this respect there has been much development

11

https://doi.org/10.1109/2.660187
https://doi.org/10.1145/1120212.1120314
https://doi.org/10.1145/290320.283557


The fading of Java’s promise as a browser language did not immediately elevate
JavaScript. One writer of the late 1990s correctly anticipated the development
of browser-independent implementations of JavaScript (fully realized in 2009
with Node.js, discussed below), but incorrectly expected JavaScript to be dis-
placed by Perl as a browser scripting language.31 Today, after twenty years of
emphasis on JavaScript’s role in client-side web development (that is, on the soft-
ware browser’s presentation of data to the user), it is seldom remembered that
Netscape Communications had explored server-side applications for JavaScript
from the start. This is clear from the language of the 1995 joint press release
with Sun, which specified that “JavaScript is an easy-to-use object scripting
language designed for creating live online applications that link together objects
and resources on both clients and servers,” and that it was “designed for use
by HTML page authors and enterprise application developers to dynamically
script the behavior of objects running on either the client or the server.”3233

Still, it is not difficult to identify in retrospect some conditions that arguably
later served JavaScript’s explosive growth, including developments virtually
coterminous with its first appearance. On April 30, 1995, the U.S. National
Science Foundation’s NSFNET, a publicly funded network of supercomputer
centers and telecommunications backbones serving academic research, was de-
commissioned, and the Internet as we know it today, unthinkable without pri-
vate telecommunications carriers and Web-facilitated “e-commerce” and “B2B”
and discussion of Java as a first programming language with many text books now available,
JavaScript has been comparatively ignored. […] We propose here that JavaScript is suffi-
ciently rich in concepts to support the teaching of introductory programming, and that it is
especially suitable for Multimedia students.” See also Rebecca Mercuri, Nira Herrmann, and
Jeffrey Popyack, “Using HTML and JavaScript in Introductory Programming Courses,” ACM
SIGCSE Bulletin 30, no. 1 (March 1998): 176–80, doi:10.1145/274790.273754, 176: “Here we
report on a course designed to exploit students’ burgeoning interest in the World Wide Web
(WWW), where we used HTML and JavaScript to teach programming concepts. These lan-
guages allow students at different skill levels to work side by side, learning common abstract
ideas while implementing them at different levels of complexity, motivated by the rewarding
and exciting interactive environment of the WWW.”

31See Aaron Weiss, “JavaScripting into the Next Millenniun,” netWorker 3, no. 4 (December
1999): 34–35, doi:10.1145/323409.328683, 35: “As a programming language alone, JavaScript’s
main appeal has been its simple learning curve, but to more experienced programmers it lacks
serious muscle-power. There are sharks in these waters — established, mature programming
languages such as Perl can now be embedded into some Web browsers […] For a seasoned
developer, the prospect of combining client-side Perl — with its agile handling of advanced
programming models — with access to the DOM would be lethal to JavaScript. We will likely
see the migration of other scripting language into the Web client as well, including Python,
TCL, SmallTalk, and perhaps more.”

32“Netscape and Sun Announce Javascript, the Open, Cross-Platform Object Scripting Lan-
guage for Enterprise Networks and the Internet,” emphasis added.

33On the early history of Netscape, see Robert Reid, Architects of the Web: 1,000 Days That
Built the Future of Business (New York: John Wiley & Sons, 1997), Michael A. Cusumano
and David B. Yoffie, Competing on Internet Time: Lessons from Netscape and Its Battle with
Microsoft (New York, NY: Free Press, 1998), Joshua Quittner and Michelle Slatalla, Speeding
the Net: The Inside Story of Netscape and How It Challenged Microsoft (New York: Atlantic
Monthly Press, 1998), and Jim Clark, Netscape Time: The Making of the Billion-Dollar
Start-up That Took on Microsoft (New York: St. Martin’s Press, 1999).

12

https://doi.org/10.1145/274790.273754
https://doi.org/10.1145/323409.328683


or business-to-business transaction activity (to use two terms common in the
mid- to late 1990s), began to take shape. America Online and Prodigy, up to
that point private “online service” providers, also began offering access to the
open Web. When the “Guide to the World Wide Web” created by Stanford
graduate students Jerry Yang and David Filo was rebaptized “Yahoo!” and
acquired the yahoo.com Web domain, large-scale Web indexing as a service was
born.

Financial speculation linked to all these developments drove the Dow Jones In-
dustrial Average past the 4,000-point threshold in February 1995 and the 5,000-
point threshold in November, making two historic transitions in a single year.
In this context, we are justified in remarking the larger context of the moment
when JavaScript emerged as an instance of what I am calling “improvised ex-
pertise.” Facilitated by new consumer-friendly electronic financial networks and
services, so-called day trading by individual small investors would grow by the
late 1990s into a widely publicized pastime. Day traders responded rapidly to
intraday price movements and sought out (as well exacerbated) price volatility,
buying and holding stocks for as little as a few minutes at a time and making
a point of closing their positions at the end of each day. Commercial service
centers opened to provide such traders with the network and PC hardware, soft-
ware, and data and financial services then unavailable to home PC users. As
a mode of improvised expertise permitting individual, often inexperienced and
inexpert speculators to bypass both the authority and the fees of stockbroker
and other expert (or at least certified) financial service providers, day trading
was associated with the volatility of so-called Internet stocks and the impro-
vised company creation and management practices of the dot-com bubble, and
it was famous for the financial disasters such securities inflicted on day traders
themselves, long before they triggered a U.S. economic recession.34

The opening of securities markets to a new class of investor whose expertise was
improvised, at best, was not the only significant economic event of 1995 and the
years following it. It was in February 1995 that the 233-year-old Barings Bank,
one of the world’s oldest surviving financial institutions, collapsed due to losses
incurred by a single Singapore-based derivatives trader who relied on the global
distribution of Barings’s operations help him evade scrutiny of his activities.
Billionaire business publishing executive Steve Forbes launched his campaign
for the 1996 Republican presidential nomination, refusing matching funds from
the U.S. Federal Election Commission to avoid any obstruction in expending
his personal wealth, a decision that would change U.S. national electoral cam-
paign financing for good by removing the relative financial restraint imposed
by FEC funds matching. Also in 1995, a new, fully formalized international in-
stitution, the World Trade Organization (WTO), replaced the treaty structure
known as the General Agreement on Tariffs and Trade (GATT) that dated to
the end of the Second World War — an event that might be understood as eco-

34See Walter Hamilton, “Hooked on Speed: How Day Trading Works,” The Los Angeles
Times, February 1999, http://articles.latimes.com/1999/feb/21/business/fi-10174.

13

http://articles.latimes.com/1999/feb/21/business/fi-10174


nomically stabilizing, were it not for the prompt eruption of disputes between
developed and developing-economy members (the as yet unresolved “Singapore
issues”) and the attention of anti-globalization activists, which would culminate
in violent street protests at the 1999 Seattle conference.

1995 was not an uneventful year politically, either. United States national po-
litical volatility increased as Speaker of the U.S. House of Representatives Newt
Gingrich, capitalizing on Republican success in the 1994 midterm elections, fin-
ished crafting the insurgent conservative legislation known as the Contract with
America and forced the first of a series of U.S. federal government closures in
a dispute with President Bill Clinton. The nearly two-decade long bombing
campaign of Theodore John “Ted” Kaczynski, a former University of California,
Berkeley mathematician who had simultaneously renounced modern technology
and taught himself to construct primitive explosives (and who had targeted aca-
demic scientists and computer stores in particular) culminated with a series of
explanatory letters and the publication of the so-called “Unabomber Manifesto”
by The New York Times and The Washington Post. And Timothy McVeigh
and Terry Nichols destroyed the Alfred P. Murrah Federal Building in Okla-
homa City with a truck bomb in the United States’ most significant act of
domestic terrorism then and since.

While such details merely share a broad historical context with my topic of
focus in this essay, the history of the JavaScript programming language, each
of these details, from the emergence of newly privatized and newly publicly
accessible Internet services, new economic governance institutions, and a new
class of inexpert financial speculators, to what are still remembered today as
very significant acts of domestic terrorism, involved conflicts and negotiations
of technical expertise, in a broad sense, and some of them were marked by
such conflicts and negotiations in the narrower sense relating specifically to
computers, as well. In that sense, that broader context cannot be separated
entirely from my topic here.

JavaScript as multi-paradigm programming language

The Java-like language that Brendan Eich was commissioned to design for the
Netscape Navigator web browser in 1995 (a task that he reportedly completed
in ten days) was initially named Mocha and then LiveScript. It acquired the
name JavaScript with the joint press release issued by Sun and Netscape in
December of that year, which I have already mentioned. In the two decades
since, Java applets have almost completely vanished from the web, and it is
JavaScript that provides the main interactive element in browser pages. Sun and
Netscape’s joint press release reminds us just how far our current situation today
is from the expectations they articulated in 1995. Though some of the rhetorical
choices made in this text are perhaps more directly reflective of competition and
licensing conflicts than anything else, it is worth dwelling on just how closely
the respective domains of Java and JavaScript were positioned at the time:

14



• “The JavaScript language complements Java, Sun’s industry-leading
object-oriented, cross-platform programming language.”

• “JavaScript is an easy-to-use object scripting language designed for cre-
ating live online applications that link together objects and resources on
both clients and servers. While Java is used by programmers to create
new objects and applets, JavaScript is designed for use by HTML page
authors and enterprise application developers to dynamically script the
behavior of objects running on either the client or the server.”

• “ ‘Programmers have been overwhelmingly enthusiastic about Java be-
cause it was designed from the ground up for the Internet. JavaScript
is a natural fit, since it’s also designed for the Internet and Unicode-based
worldwide use,’ said Bill Joy, co-founder and vice president of research
at Sun. ‘JavaScript will be the most effective method to connect HTML-
based content to Java applets’.”

Java would be used to create code objects including applets (that is, small appli-
cations), and JavaScript programs would connect such objects and script (that
is, configure and control) their behavior, providing them with a HTML-based
user interface. If this particular separation of roles (Java as application program-
ming language vs. JavaScript as scripting language) is clear, the attention the
press release also devotes to “server-side JavaScript” may cloud it somewhat:

• “With JavaScript, an HTML page might contain an intelligent form that
performs loan payment or currency exchange calculations right on the
client in response to user input. A multimedia weather forecast applet
written in Java can be scripted by JavaScript to display appropriate im-
ages and sounds based on the current weather readings in a region. A
server-side JavaScript script might pull data out of a relational database
and format it in HTML on the fly. A page might contain JavaScript scripts
that run on both the client and the server. On the server, the scripts might
dynamically compose and format HTML content based on user preferences
stored in a relational database, and on the client, the scripts would glue to-
gether an assortment of Java applets and HTML form elements into a live
interactive user interface for specifying a net-wide search for information.”

• “Java programs and JavaScript scripts are designed to run on both clients
and servers, with JavaScript scripts used to modify the properties and
behavior of Java objects, so the range of live online applications that
dynamically present information to and interact with users over enterprise
networks or the Internet is virtually unlimited. Netscape will support Java
and JavaScript in client and server products as well as programming tools
and applications to make this vision a reality.”

While there is no reason that two server-side programs (or for that matter,
entire code bases) cannot maintain such distinctly complementary roles as are
imagined here, the question of whether JavaScript might someday be able to
perform alone in both such roles seems already latent in these formulations.
Indeed, there exist unambiguous records of the tension around this issue, which

15



it does not require much imagination to find in some of the joint press release’s
strained locutions, which read like a parent ordering two sibling children to get
along. As Eich has put it: “If I had done classes in JavaScript back in May
1995, I would have been told that it was too much like Java or that JavaScript
was competing with Java […] I was under marketing orders to make it look like
Java but not make it too big for its britches […] [JavaScript] needed to be a
silly little brother language.”35 Given that Java was already established, some
at Netscape did not initially see any benefit in establishing and maintaining a
separate language.36

Under such conditions, it is unsurprising that JavaScript was designed and im-
plemented in haste, and with the hope that its shortcomings could be addressed
in continued development. Eich brought a great deal of both organic and impro-
vised expertise to bear on JavaScript’s design. On the one hand, JavaScript’s
syntax is derived from the systems programming language C, by way of Java’s
own C-like syntax. On the other hand, Eich modeled JavaScript features like
first-class functions and function closure on their equivalents in Scheme, a di-
alect of Lisp and so a member of a very different programming language family.
Eich also adapted the prototype-based inheritance model of Self, a dialect of
Smalltalk (a language and integrated programming environment designed in
the 1970s for instructional and expressive computing), to provide JavaScript
with object-oriented programming features. In combining these three quite dif-
ferent models — procedural or imperative in the case of C and Java, functional
in the case of Scheme, and object-oriented in the case of Self — Eich made
JavaScript a multi-paradigm language from the very start.

Although JavaScript was not the first such multi-paradigm language, such a
synthesis is non-trivial in the design labor involved and in the prospects that
JavaScript still presents for study even today. In synthesizing the three major
programming paradigms, JavaScript certainly incorporated more complexity,
even at the start, than most people would consider necessary in a language de-
signed for novice and inexpert programmers. For novices, learning one program-
ming model at a time (or only one model at all!) would certainly be considered
more than enough. The tension between the design expertise that Eich brought
to bear in creating JavaScript and its promotion as a language for inexpert users
is especially interesting in Eich’s own statements, which wholeheartedly endorse
such promotion:

[W]hat people wanted back then (and still want) is the ability to
go one step beyond HTML and add a little bit of code that makes
a web page dynamic — that makes things move, respond to user
input, or change color; that makes new windows pop up; or that
raises a dialog box to ask a question, with an answer necessary to
proceed — things that HTML cannot express. That’s really where

35Qtd. in “Computing Conversations with Brendan Eich,” January 2012, https://www.
youtube.com/watch?v=IPxQ9kEaF8c.

36“Computing Conversations with Brendan Eich.”

16

https://www.youtube.com/watch?v=IPxQ9kEaF8c
https://www.youtube.com/watch?v=IPxQ9kEaF8c


you need a programming language, but something simpler than Java
or C++. Content creation should not be recondite. It should not
be this bizarre arcana that only experts and gold-plated computer
science gurus can do.37

JavaScript as translational programming language

Despite borrowing most of its syntax from C and Java, JavaScript can certainly
be written in a way that makes it resemble Scheme (see figure 1). To its ex-
plicit synthesis of multiple programming models or paradigms (procedural or
imperative, functional, and object-oriented), and to the divergent idiomaticity
facilitated by the incorporation of features from very different languages, whose
syntactic expressions may deform JavaScript’s basically C-like syntax, we must
add two other “multilingual” contexts for the development of JavaScript from
1995 to the present. The first is the development of of the ECMAScript standard,
implementations of (and deviations from) the standard in major web browsers,
and the ongoing, both forward and backward “translation” by which the de-
velopment of the standard, its implementation in browsers, and its use in web
programming are mediated. The second is the compilation of JavaScript to
other, often non-related programming languages. I will describe each in turn.

[Figure 1]

function Y(le) {
return (function (f) {

return f(f);
}(function (f) {

return le(function (x) {
return f(f)(x);

});
}));

}

FIGURE CAPTION: The Applicative Order Y Combinator, from Daniel P.
Friedman and Matthias Felleisen,38 implemented by Douglas Crockford in
JavaScript. See Douglas Crockford.39

I have already mentioned the first edition of ECMA-262 (ISO/IEC 16262), Ecma
International’s specification for ECMAScript, which described ECMAScript as
a scripting language “intended for use by both professional and non-professional

37Marc Andreessen, “Innovators of the Net: Brendan Eich and Javascript,”
June 1998, https://web.archive.org/web/20080208124612/http://wp.netscape.com/comprod/
columns/techvision/innovators_be.html.

38The Little Schemer, 4th ed (Cambridge Mass: MIT Press, 1996).
39“The Little JavaScripter,” Douglas Crockford’s World Wide Web, 2003, http://www.

crockford.com/javascript/little.html.

17

https://web.archive.org/web/20080208124612/http://wp.netscape.com/comprod/columns/techvision/innovators_be.html
https://web.archive.org/web/20080208124612/http://wp.netscape.com/comprod/columns/techvision/innovators_be.html
http://www.crockford.com/javascript/little.html
http://www.crockford.com/javascript/little.html


programmers.”40 There exist seven published editions to date (ECMAScript 1,
2, 3, 5, 5.1, 6, and 7, excluding ECMAScript 4, which was abandoned), and the
first edition’s emphasis on design for nonprofessional users was retained all the
way through the fifth edition published in 2009. The third edition published
in 1999 included minor changes to the initial paragraphs of the section titled
“Overview” (section 4), changing “A scripting language is intended for use by
both professional and non-professional programmers, and therefore there may
be a number of informalities built into the language” to “A scripting language
is intended for use by both professional and nonprofessional programmers. To
accommodate non-professional programmers, some aspects of the language may
be somewhat less strict.”41 The fifth edition published in 2009 deleted the
latter sentence, leaving only “A scripting language is intended for use by both
professional and nonprofessional programmers.”42

The sixth edition published in 2015 made much more significant changes, which
put meaningful distance between JavaScript’s history and its present. To the
paragraph defining a scripting language, a new sentence was prepended: “EC-
MAScript was originally designed to be used as a scripting language, but has
become widely used as a general purpose programming language.”43 An entirely
new paragraph was added elaborating this point:

ECMAScript usage has moved beyond simple scripting and it is now
used for the full spectrum of programming tasks in many different
environments and scales. As the usage of ECMAScript has expanded,
so has the features and facilities it provides. ECMAScript is now a
fully featured general propose programming language.44

Since the end of the ten-year interval separating the third and fifth editions,
which saw the development and then abandonment of a fourth edition, feature
addition has been rapid and extensive, with the fifth edition in 2009 and the
sixth in 2015 both adding significant new features. After the long, partly fallow
interval from 1999 to 2009, this rapid pace of development stimulated the devel-
opment of a culture of experimental implementation in which features still only
in proposed or only partially and non-bindingly approved form, in published
drafts and other documents relation to the ECMAScript specification, were in-
cluded in beta or developer versions of major web browsers, and eventually even
in some user versions. Even before reaching a developer version of a web browser
like Google Chrome, such features found their way into use through the media-

40“ECMAScript,” 1.
41“ECMAScript Language Specification: Standard ECMA-262, 3rd Edition” (ECMA, De-

cember 1999), 1, http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/
ECMA-262,%203rd%20edition,%20December%201999.pdf.

42“ECMAScript Language Specification: Standard ECMA-262, 5th Edition” (ECMA, De-
cember 2009), 2, http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/
ECMA-262%205th%20edition%20December%202009.pdf.

43“ECMAScript Language Specification: Standard ECMA-262, 6th Edition” (ECMA, June
2015), http://www.ecma-international.org/ecma-262/6.0/.

44“ECMAScript Language Specification.”

18

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
http://www.ecma-international.org/ecma-262/6.0/


tion of source-to-source compilers (also called transcompilers or transpilers) that
rewrote JavaScript code using experimental features in a form compliant with
previously published editions of the ECMAScript specification (and thus guaran-
teed to work in user versions of browsers). At the same time, as other browser
vendors (Microsoft with its Internet Explorer browser, and to a lesser extent
Apple with its Safari browser) failed to implement all the features in already
published past editions of the ECMAScript specification, transpilation was used
to make JavaScript code uniformly executable across browser platforms.

Source-to-source compilation is as old as the history of higher-level program-
ming languages themselves, with examples dating all the way back to the 1950s.
The especially vigorous, even frenetic pace of such activity in web development
and other JavaScript programming today merely hyper-animates the long his-
tory of translation metaphors through which the history of digital computing
itself can be traced.45 Yet JavaScript programming may well be unique and
unprecedented in the range and scale of such activity, if not in its mere fact.
It is appropriate indeed that the most widely used source-to-source JavaScript
compiler used to rewrite JavaScript code to conform to different ECMAScript
specifications has the name Babel.46

We have not mentioned the many other programming languages that provide
the option to transpile to JavaScript in addition to their original targets. An
authoritative list includes not only many variants best described as JavaScript
subsets, supersets, or extensions (many of them with names relating to coffee,
such as the large CoffeeScript family), but compilers that will take in code
in C/C++, Java, Perl, Python, Ruby, C#, Scala, Clojure, OCaml, Haskell,
and other both major and minor, older and newer languages and rewrite it in
JavaScript.47 Here too, it is unlikely that anything else of this range and scale
has ever been seen in the history of software programming. In a domain that is
and has always been defined by constant translation, JavaScript programming
culture can be distinguished as exceptionally translational.

Node.js

A major, perhaps the major factor in the rapid expansion of JavaScript’s domain
is the Node.js project, which dates to 2009. Node.js is a JavaScript runtime envi-
ronment disembedded from the browser software application and written much
as scripting languages like Python and Ruby are written: a developer may use
command-line utilities, including a REPL (Read-Eval-Print Loop) and debugger,
along with a software application text editor or Integrated Development Envi-

45See David Nofre, Mark Priestley, and Gerard Alberts, “When Technology Became Lan-
guage: The Origins of the Linguistic Conception of Computer Programming, 1950–1960,”
Technology and Culture 55, no. 1 (2014): 40–75, doi:10.1353/tech.2014.0031.

46“Babel: A Compiler for Writing Next Generation Javascript,” 2016, https://babeljs.io/.
47Jeremy Ashkenas, “List of Languages That Compile to JS” (GitHub, 2016), https://github.

com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-JS.

19

https://doi.org/10.1353/tech.2014.0031
https://babeljs.io/
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-JS


ronment (IDE) to write and test programs locally on her or his own computer,
but outside the browser application environment. The Node.js interpreter can
run on a server, as well as on a desktop PC and in other software and networking
contexts, and it can be embedded in a wide range of computing devices. While
the earlier popularization of so-called Ajax (Asynchronous JavaScript and XML)
programming techniques, closely associated with Google’s Maps products, cer-
tainly got the ball rolling in this respect, it may be Node.js more than any other
single factor that has transformed JavaScript from a scripting language initially
used disproportionately to create “annoyances” like browser pop-up windows48

into something approaching a full-fledged systems programming language. Ar-
guably, the Node.js project has revived, reactualized, and then realized the
promise of the forgotten chapter of JavaScript’s history marked by Netscape’s
early imagination and exploration of server-side JavaScript applications. For the
first time since the appearance of the World Wide Web and the software browser
application, Node.js unifies so-called front end and back end web development,
so that so-called full stack developers, who write code for both user-facing and
data processing components of an application, can use a single programming
language for both tasks.

The applications of Node.js go beyond the server (though in that context, we
should also mention the displacement of XML, as used in the earliest Ajax tech-
niques, by the JavaScript-associated JSON [JavaScript Object Notation] data
exchange format). Web application frameworks written in Node (Express.js
and Meteor are two of the best known) have eroded the popularity of Rails, the
Ruby-based application framework that dominated web development from the
late 2000s onward. The Node-based Electron framework is increasingly used to
develop platform-agnostic desktop GUI applications (that is, conventional appli-
cations that a user downloads and runs on her or his own machine, rather than
using in a browser window). Node’s popularity also explains Apple’s inclusion in
2015 of JavaScript as one of the operating system languages of macOS (formerly
OS X), usable for inter-application communication, as well as the inclusion of
JavaScript “bridges” in the Apple iOS and Google Android operating systems
for mobile platforms, enabling compilation to a JavaScript bound to the native
system programming languages of those platforms (C, C++, Objective C/Swift,
and Java).

The frameworks

For the reasons mentioned above, it is Node.js, more than anything else, that
has driven the recent hyper-professionalization of JavaScript programming, re-
moving the language quite decisively from that portion of its design origins that
emphasized accessibility to inexpert and non-professional programmers. A de-
velopment separate from the Node.js project, but of nearly equal impact on both
JavaScript’s expansion and its hyper-professionalization, is the proliferation of

48“Computing Conversations with Brendan Eich.”

20



other JavaScript-based web application frameworks not directly designed for or
implemented in Node. The Ember.js, AngularJS, and React frameworks pro-
vide web developers with very sophisticated, unified abstractions of the three
core browser technologies (HTML, CSS, and client-side JavaScript itself) that
have made possible great leaps in both the sophistication of web applications
and the creativity and productivity of those who write them. But they have also
quite decisively propelled web development beyond the domain of accessibility
imagined for the Web when it first appeared, which may have persisted in real
terms for as long as ten years after 1995, in the sense that wage-earning web
programming techniques could still be learned through casual and part-time
training or retraining.

The professional construction and maintenance of web sites today requires both
initial and ongoing training, and requires a level of skill maintenance and re-
training, that puts it well out of reach for virtually anyone who is unable to
devote her- or himself to its full-time pursuit — even academic researchers,
excepting those who study and teach web technologies as a well-defined and
well-developed technical research specialty. It is not the mere passage of time
that makes the humanities-based wave of emancipatory hypertext theory of
the 1990s, for example, seem so quaint,49 and makes its re-instantiation in the
present “digital humanities” movement seem so disingenuous or so guileless,
depending on whom one asks. It is not that JavaScript no longer stands for
technical improvisation, but that in what I have been calling improvised ex-
pertise, expertise is now both unambiguously and unambivalently the agent of
improvisation, instead of its object.

JavaScript fatigue — and other futures

This shift has not been universally (or even broadly) welcomed. Indeed, the fre-
netic pace of change, if not the levels of skill required, is clearly a burden even to
well-trained and experienced full-time professional developers. In early 2016, the
phrase “JavaScript fatigue” began appearing in social media posts, blog writing,
podcast discussion, and discussion at professional JavaScript developer confer-
ences and briefly dominated such discussions as a collective preoccupation.50

The developer who began circulating the phrase had lamented the “confusing
nest of build tools, boilerplate, linters, & [other] time-sinks” that the individual
and combined profusion of new language features, transpilers, frameworks, and
other developer “tooling” (that is, custom applications for various programming
tasks) represented: an entire preliminary phase of assessment and labor that was

49See, for example, George P. Landow, Hypertext: The Convergence of Contemporary Crit-
ical Theory and Technology, Parallax (Baltimore: Johns Hopkins University Press, 1992).

50See Eric Clemmons, “JavaScript Fatigue,” Medium, December 2015, https://medium.com/
@ericclemmons/javascript-fatigue-48d4011b6fc4#.c0ve3n241 and Calvin French-Owen, “The
Deep Roots of Javascript Fatigue,” Segment Blog, March 2016, https://segment.com/blog/the-
deep-roots-of-js-fatigue/.

21

https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.c0ve3n241
https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.c0ve3n241
https://segment.com/blog/the-deep-roots-of-js-fatigue/
https://segment.com/blog/the-deep-roots-of-js-fatigue/


required before a JavaScript web application could even begin to be designed.51

It is this profusion, which many JavaScript developers find suffocating, that my
intentionally lighthearted title “JavaScript Affogato” is intended to name, re-
ferring to the Italian dessert consisting of ice cream or other sweets “drowned”
in espresso coffee.52 A soberer assessment would be bound to remind us that
at some level, howsoever mediated, this hypertrophy of labor, and all the struc-
tural and personal strains that go with it, reflect or perhaps co-constitute the
extensive economic violence of the interval beginning in 2008 and continuing
to this day. Professional programmers have been among the few labor-market
beneficiaries of an era of austerity and generalized economic pain and suffer-
ing, and such luck is nothing if not equally a curse. Certainly the significant
priority placed on JavaScript, in particular, and its concomitant growth during
this period, reflects the priorities declared by investment patterns focused on
the user-facing “app” as a cultural token, associated with making and building
things as “free” labor (free as in freedom) and adaptation to austerity, and as
a new object of financial engineering.

In 2014 Brendan Eich’s resignation as CEO of the Mozilla Corporation, only
nine days after taking the position, was described by a writer for The New
Yorker as “the least surprising C.E.O. departure ever,” given that Silicon Valley
was “a region of the business world where social liberalism is close to a universal
ideology.”53 (Eich’s having donated to an anti-marriage equality campaign sup-
porting California’s ballot Proposition 8 in 2008 was a fact known beforehand,
which became newly controversial upon Eich’s appointment.) It might be more
accurate to say that in a broader context, the episode reflects the fundamental
confusion of the specifically cyberlibertarian politics of Silicon Valley investment
and management culture, which borrows ideas freely, but mostly unreflectively
and unsynthetically from both statist left and anti-statist right-wing political
platforms, in ways that seem to reflect the startup culture’s ambivalence about
its own expertise. Though a great deal of work remains to be done to articulate
the meaning such contexts lend to topics such as my own, in this essay, such
social dynamics cannot be delinked from the technical history of the artifacts
designed and produced in contexts determined by them — even, or perhaps
especially, such an artifact as a programming language.

References

Alba, Davey. “The AP Finally Realizes It’s 2016, Will Let Us Stop Capitaliz-
ing ‘Internet’.” Wired, April 2016. http://www.wired.com/2016/04/ap-finally-

51Clemmons, “JavaScript Fatigue.”
52“JavaScript Affogato” is a variation on (and homage to) the witty phrasing of Reginald

Brathwaite in a series of advanced, theoretically sophisticated books on JavaScript. See Regi-
nald Braithwaite, JavaScript Allongé (Leanpub, 2013) and Reginald Braithwaite, JavaScript
Spessore (Leanpub, 2015).

53James Surowiecki, “How Mozilla Lost Its C.E.O.” The New Yorker, April 2014, http:
//www.newyorker.com/business/currency/how-mozilla-lost-its-c-e-o.

22

http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/
http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/
http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/
http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/
http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/
http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/
http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/
http://www.wired.com/2016/04/ap-finally-realizes-2016-will-let-us-stop-capitalizing-internet/


realizes-2016-will-let-us-stop-capitalizing-internet/.

Andreessen, Marc. “Innovators of the Net: Brendan Eich and Javascript,” June
1998. https://web.archive.org/web/20080208124612/http://wp.netscape.com/
comprod/columns/techvision/innovators_be.html.

Ashkenas, Jeremy. “List of Languages That Compile to JS.” GitHub,
2016. https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-
compile-to-JS.

“Babel: A Compiler for Writing Next Generation Javascript,” 2016. https:
//babeljs.io/.

Bemer, R. W. “A Politico-Social History of Algol (with a Chronology in the
Form of a Log Book).” In Annual Review of Automatic Programming, 151–237.
Annual Review of Automatic Programming 5. Pergamon, 1969.

Bergin, Thomas J. “A History of the History of Programming Languages.” Com-
mun. ACM 50, no. 5 (May 2007): 69–74. doi:10.1145/1230819.1230841.

Bergin, Thomas J., and Richard G. Gibson, eds. History of Programming Lan-
guages II. New York: ACM Press; Addison-Wesley, 1996.

Braithwaite, Reginald. JavaScript Allongé. Leanpub, 2013.

———. JavaScript Spessore. Leanpub, 2015.

Britcher, Robert N. The Limits of Software: People, Projects, and Perspectives.
Reading, MA: Addison-Wesley, 1999.

Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on Software Engi-
neering. Anniversary edition. Reading, MA: Addison-Wesley, 1995.

Campbell-Kelly, Martin. From Airline Reservations to Sonic the Hedgehog: A
History of the Software Industry. History of Computing. Cambridge, Mass.:
MIT Press, 2004.

Cassel, David. “Evolve or Die: Java, C++ Confront Newcomers on the TIOBE
Index.” The New Stack, March 2016. https://thenewstack.io/evolve-die-
popular-programming-languages-confront-newcomers-tiobe-index/.

Clark, Jim. Netscape Time: The Making of the Billion-Dollar Start-up That
Took on Microsoft. New York: St. Martin’s Press, 1999.

Clemmons, Eric. “JavaScript Fatigue.” Medium, December 2015. https://
medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.c0ve3n241.

“Computing Conversations with Brendan Eich,” January 2012. https://www.
youtube.com/watch?v=IPxQ9kEaF8c.

Crockford, Douglas. Javascript: The Good Parts. Beijing: O’Reilly, 2008.

———. “The Little JavaScripter.” Douglas Crockford’s World Wide Web, 2003.
http://www.crockford.com/javascript/little.html.

23

https://web.archive.org/web/20080208124612/http://wp.netscape.com/comprod/columns/techvision/innovators_be.html
https://web.archive.org/web/20080208124612/http://wp.netscape.com/comprod/columns/techvision/innovators_be.html
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-JS
https://babeljs.io/
https://babeljs.io/
https://doi.org/10.1145/1230819.1230841
https://thenewstack.io/evolve-die-popular-programming-languages-confront-newcomers-tiobe-index/
https://thenewstack.io/evolve-die-popular-programming-languages-confront-newcomers-tiobe-index/
https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.c0ve3n241
https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.c0ve3n241
https://www.youtube.com/watch?v=IPxQ9kEaF8c
https://www.youtube.com/watch?v=IPxQ9kEaF8c
http://www.crockford.com/javascript/little.html


Cusumano, Michael A., and David B. Yoffie. Competing on Internet Time:
Lessons from Netscape and Its Battle with Microsoft. New York, NY: Free
Press, 1998.

“ECMAScript Language Specification: Standard ECMA-262, 3rd Edition.”
ECMA, December 1999. http://www.ecma-international.org/publications/
files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%
201999.pdf.

“ECMAScript Language Specification: Standard ECMA-262, 5th Edition.”
ECMA, December 2009. http://www.ecma-international.org/publications/
files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.
pdf.

“ECMAScript Language Specification: Standard ECMA-262, 6th Edition.”
ECMA, June 2015. http://www.ecma-international.org/ecma-262/6.0/.

“ECMAScript: A General Purpose, Cross-Platform Programming Lan-
guage. Standard Ecma-262, June 1997.” ECMA, June 1997. http:
//www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-
262,%201st%20edition,%20June%201997.pdf.

Flanagan, David. Javascript: The Definitive Guide. 6th ed. Beijing ; Se-
bastopol, CA: O’Reilly, 2011.

French-Owen, Calvin. “The Deep Roots of Javascript Fatigue.” Segment Blog,
March 2016. https://segment.com/blog/the-deep-roots-of-js-fatigue/.

Friedman, Daniel P., and Matthias Felleisen. The Little Schemer. 4th ed. Cam-
bridge Mass: MIT Press, 1996.

Hamilton, Walter. “Hooked on Speed: How Day Trading Works.” The Los Ange-
les Times, February 1999. http://articles.latimes.com/1999/feb/21/business/fi-
10174.

Knuth, Donald E., and Luis Trabb Pardo. “The Early Development of Pro-
gramming Languages.” Stanford, CA, August 1976.

Ko, Andrew J. “What Is a Programming Language, Really?” 32–33. ACM
Press, 2016. doi:10.1145/3001878.3001880.

Kurtz, Thomas E. “BASIC Session.” In History of Programming Languages,
edited by Richard L. Wexelblat, 515–50. New York: Academic Press, 1981.

Landow, George P. Hypertext: The Convergence of Contemporary Critical The-
ory and Technology. Parallax. Baltimore: Johns Hopkins University Press,
1992.

Lee, Alison, and Andreas Girgensohn. “Developing Collaborative Appli-
cations Using the World Wide Web ”Shell”,” 144. ACM Press, 1997.
doi:10.1145/1120212.1120314.

24

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
https://segment.com/blog/the-deep-roots-of-js-fatigue/
http://articles.latimes.com/1999/feb/21/business/fi-10174
http://articles.latimes.com/1999/feb/21/business/fi-10174
https://doi.org/10.1145/3001878.3001880
https://doi.org/10.1145/1120212.1120314


Mackenzie, Adrian. Cutting Code: Software and Sociality. Digital Formations,
v. 30. New York: Peter Lang, 2006.

Marino, Mark C. “Critical Code Studies.” Electronic Book Review, December
2006. http://www.electronicbookreview.com/thread/electropoetics/codology.

Martin, James. Application Development Without Programmers. Englewood
Cliffs, N.J: Prentice-Hall, 1982.

McMillan, Robert. “Is Java Losing Its Mojo?” Wired, January 2013. http:
//www.wired.com/2013/01/java-no-longer-a-favorite/.

McPeak, Jeremy, and Paul Wilton. Beginning Javascript, 5th Edition. 5th
edition. Indianapolis, IN: John Wiley; Sons, 2015.

Mercuri, Rebecca, Nira Herrmann, and Jeffrey Popyack. “Using HTML and
JavaScript in Introductory Programming Courses.” ACM SIGCSE Bulletin 30,
no. 1 (March 1998): 176–80. doi:10.1145/274790.273754.

Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass, Mark
C. Marino, Michael Mateas, Casey Reas, Mark Sample, and Noah Vawter. 10
PRINT CHR$(205.5+RND(1));:GOTO 10. Computer software Studies. Cam-
bridge, MA: MIT Press, 2013.

“Netscape and Sun Announce Javascript, the Open, Cross-Platform
Object Scripting Language for Enterprise Networks and the Internet,”
December 1995. https://web.archive.org/web/20070916144913/http:
//wp.netscape.com/newsref/pr/newsrelease67.html.

Nofre, David, Mark Priestley, and Gerard Alberts. “When Technology Be-
came Language: The Origins of the Linguistic Conception of Computer Pro-
gramming, 1950–1960.” Technology and Culture 55, no. 1 (2014): 40–75.
doi:10.1353/tech.2014.0031.

Ousterhout, J.K. “Scripting: Higher Level Programming for the 21st Century.”
Computer 31, no. 3 (1998): 23–30. doi:10.1109/2.660187.

Paulson, William. “For a Cosmopolitical Philology: Lessons from Science Stud-
ies.” SubStance 30, no. 3 (January 2001): 101–19. doi:10.1353/sub.2001.0033.

Priestley, Mark. A Science of Operations: Machines, Logic and the Invention
of Programming. History of Computing. New York; London: Springer, 2010.

Quittner, Joshua, and Michelle Slatalla. Speeding the Net: The Inside Story of
Netscape and How It Challenged Microsoft. New York: Atlantic Monthly Press,
1998.

Reid, Robert. Architects of the Web: 1,000 Days That Built the Future of
Business. New York: John Wiley & Sons, 1997.

Rosenberg, Scott. Dreaming in Code: Two Dozen Programmers, Three Years,
4,732 Bugs, and One Quest for Transcendent Software. New York: Three Rivers
Press, 2008.

25

http://www.electronicbookreview.com/thread/electropoetics/codology
http://www.wired.com/2013/01/java-no-longer-a-favorite/
http://www.wired.com/2013/01/java-no-longer-a-favorite/
https://doi.org/10.1145/274790.273754
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://doi.org/10.1353/tech.2014.0031
https://doi.org/10.1109/2.660187
https://doi.org/10.1353/sub.2001.0033


Sammet, Jean E. Programming Languages: History and Fundamentals. Engle-
wood Cliffs, N.J.: Prentice-Hall, 1969.

Simpson, Kyle. Up & Going. First Edition. You Don’t Know JS. Sebastopol,
CA: O’Reilly Media, 2015.

Snyder, Bill. “Java Is Becoming the New Cobol.” InfoWorld, December 2007.
http://www.infoworld.com/article/2650254/application-development/java-is-
becoming-the-new-cobol.html.

Stroustrup, Bjarne. “Bjarne Stroustrup’s FAQ.” Bjarne Stroustrup’s Homepage,
February 2016. http://www.stroustrup.com/bs_faq.html.

Surowiecki, James. “How Mozilla Lost Its C.E.O.” The New Yorker, April 2014.
http://www.newyorker.com/business/currency/how-mozilla-lost-its-c-e-o.

Ullman, Ellen. Close to the Machine: Technophilia and Its Discontents. New
York: Picador / Farrar, Straus,; Giroux, 2012.

Ward, Robert, and Martin Smith. “Javascript as a First Programming Lan-
guage for Multimedia Students.” ACM SIGCSE Bulletin 30, no. 3 (September
1998): 249–53. doi:10.1145/290320.283557.

Warren, Tom. “Oracle’s Finally Killing Its Terrible Java Browser Plugin.” The
Verge, January 2016. http://www.theverge.com/2016/1/28/10858250/oracle-
java-plugin-deprecation-jdk-9.

Weinberg, Gerald M. The Psychology of Computer Programming. Silver an-
niversary edition. New York: Dorset House, 1998.

Weiss, Aaron. “JavaScripting into the Next Millenniun.” netWorker 3, no. 4
(December 1999): 34–35. doi:10.1145/323409.328683.

Wexelblat, Richard L., ed. History of Programming Languages. New York:
Academic Press, 1981.

26

http://www.infoworld.com/article/2650254/application-development/java-is-becoming-the-new-cobol.html
http://www.infoworld.com/article/2650254/application-development/java-is-becoming-the-new-cobol.html
http://www.stroustrup.com/bs_faq.html
http://www.newyorker.com/business/currency/how-mozilla-lost-its-c-e-o
https://doi.org/10.1145/290320.283557
http://www.theverge.com/2016/1/28/10858250/oracle-java-plugin-deprecation-jdk-9
http://www.theverge.com/2016/1/28/10858250/oracle-java-plugin-deprecation-jdk-9
https://doi.org/10.1145/323409.328683

	Abstract
	Introduction
	Java and JavaScript
	System and scripting languages
	Other contexts
	JavaScript as multi-paradigm programming language
	JavaScript as translational programming language
	Node.js
	The frameworks
	JavaScript fatigue — and other futures
	References

