
ABSTRACT: This essay attempts a philological—meaning a both
technically and socially attentive—historical study of an individual
computer programming language, JavaScript. From its introduction,
JavaScript’s reception by software developers, and its importance in
web development as we now understand it, was structured by a con-
tinuous negotiation of expertise. I use the term “improvised expertise”
to describe both conditions for and effects of the unanticipated de-
velopment of JavaScript, originally designed for casual and inexpert
coders, into a complex of technical artifacts and practices whose range
and complexity of use has today propelled it into domains previously
dominated by other, often older and more prestigious languages. “Im-
provised expertise” also marks the conditions for and effects of three
specific developmental dynamics in JavaScript’s recent history: first,
the rapidly accelerated development of the language itself, in the ver-
sions of its standard specification; second, the recent, abruptly emerg-
ing, yet rapid growth of JavaScript in server-side networking, data pro-
cessing, and other so-called back-end development tasks previously
off limits to it; third, the equally recent and abrupt, yet decisive emer-
gence of JavaScript as the dominant language of a new generation of
dynamic web application frameworks and the developer tool chains
or tooling suites that support them.

Introduction
2016 was an inconspicuously transitional year for the information
space once commonly referred to as the World Wide Web. Those

47

JavaScript Affogato:

Programming a Culture of

Improvised Expertise

Brian Lennon
Pennsylvania State University

Configurations, 2018, 26:47–72 © 2018 by Johns Hopkins University Press

and the Society for Literature, Science, and the Arts.

48 CONFIGURATIONS

attentive to linguistic usage will recall that the 2016 edition of The
Associated Press Stylebook and Briefing on Media Law released in June
recommended that the words “internet” and “web” no longer be
written with initial capital letters,1 in a sign that the propriety marked
by their referents’ novelty had finally settled, or worn off. For those
more attuned to matters of technical infrastructure, what may come
to mind instead is the announcement by Oracle Corporation that
its Java web browser plugin would be deprecated in the forthcom-
ing ninth version of its Java Development Kit (JDK), a platform for
writing and packaging software applications in the Java program-
ming language.2 Taking these two real, if lesser milestones together,
it seems safe to say that for anyone who remembers the original
promise made for Java applets as a common WWW technology, at
their moment of emergence in the mid-1990s, this was a chapter of
recent technological and cultural history quietly coming to an end.3

To be sure, Oracle’s hand had been forced by Microsoft, Google,
and Apple, who had either reduced Java plugin support in their
browser products or removed it entirely. And yet embedded Java ap-
plets had long since become a legacy technology, still useful for some
computationally intensive graphical visualization tasks (dispropor-
tionately in scientific applications), but no longer in wide use out-
side that domain. Whether or not they are old enough to remember
the role originally imagined for Java in the browser, in particular,
most of those who design websites and program web applications for
a living today would be unlikely to regret their eclipse. Even before
the emergence of personal data security as a substantive public issue
in 2012, Java applets presented grave, often intractable security risks
that web developers had had to learn how to manage, or ignore. A
more general reason for the irrelevance of Java browser applets by
2016 was a historical one, linked to changes in the profile of the Java
programming language and Java programmers in the software devel-
opment industry as a whole. When Fredrick P. Brooks Jr. chose for
the seventh chapter of The Mythical Man-Month: Essays on Software
Engineering (1975) the title “Why Did the Tower of Babel Fail?,” he

1. Davey Alba, “The AP Finally Realizes It’s 2016, Will Let Us Stop Capitalizing ‘Inter-
net,’” Wired, April 2, 2016, http://www.wired.com/2016/04/ap-finally-realizes-2016-will
-let-us-stop-capitalizing-internet/.

2. Tom Warren, “Oracle’s Finally Killing Its Terrible Java Browser Plugin,” Verge, January
28, 2016, http://www.theverge.com/2016/1/28/10858250/oracle-java-plugin-depreca
tion-jdk-9.

3. Some readers may also have thought of the acquisition of Yahoo Inc. by Verizon
Communications, announced on July 25, 2016, several months after an initial draft of
this essay was completed.

Lennon / JavaScript Affogato 49

was reflecting on the biblical story of Babel as a fable of engineering
(the hubristic or merely presumptuous construction of a tower tall
enough to reach heaven), rather than a fable of language (divine
punishment imposed in the form of linguistic difference and perma-
nently impaired communication).4 Nevertheless, The Mythical Man-
Month, the first widely read and still the most celebrated reflection
on managing large software projects, was also an informal study of
communication, not excluding the metaphorized communication
that a software programmer struggles to achieve with a machine.

The present essay is about the negotiation of technical expertise,
specifically the technical expertise involved in software program-
ming, and in particular that involved in programming websites and
applications—that is, what is today called “web development.” I take
my bearings from the present historical moment, understood as an
interval of continued economic recession (or, if one insists, “uneven
recovery”) shaped by both economic and political investment in
“coding” instruction as job retraining for unemployed and under-
employed US blue- and white-collar workers alike. In recent years,
sociologically oriented cultural studies scholars like Adrian Mack-
enzie have produced valuable work on cultures of software devel-
opment, work that is laudable for being simultaneously technically
informed and socially focused.5 While it has been receptive to such
research in so-called software studies, scholarship in humanities dis-
ciplines has not displayed a proportionate interest in the specifically
social and cultural dimensions of the specifically linguistic history
of computing, and this is the case especially where individual pro-
gramming languages and their development and usage cultures are
concerned.6 The broad exception is, of course, the historiography of

4. See Frederick P. Brooks Jr., The Mythical Man-Month: Essays on Software Engineering,
20th anniversary ed. (Reading, MA: Addison-Wesley, 1995).

5. See Adrian Mackenzie, Cutting Code: Software and Sociality (New York: Peter Lang,
2006).

6. A partial exception is Nick Montfort, Patsy Baudoin, John Bell, Ian Bogost, Jeremy
Douglass, Mark C. Marino, Michael Mateas, Casey Reas, Mark Sample, and Noah Vaw-
ter, 10 PRINT CHR$(205.5+RND(1)); : GOTO 10 (Cambridge, MA: MIT Press, 2013),
seven of the eleven main chapters of which focus on the BASIC programming lan-
guage. Only one of these seven chapters could reasonably be called a study of the BA-
SIC language, however, with the remaining six devoted to explaining very simple com-
mand sequences and very brief programs to readers who are assumed to have no
knowledge either of BASIC or any other programming language. The book’s eighth
main chapter, entitled simply “BASIC,” does discuss language design and syntax varia-
tion in some detail, but is otherwise given over to reviewing BASIC’s implementation
and usage history, again for a reader assumed to lack elementary knowledge of the
subject. As of this writing, 10 PRINT CHR$(205.5+RND(1)); : GOTO 10 is the only book-

50 CONFIGURATIONS

computing, and science and technology studies more broadly. But
even here, Mark Priestley is surely right to suggest that early, purely
technical histories of programming languages have been followed
by socially attentive histories of software as a general object and do-
main, leaving individual languages behind as objects of potentially
equally both technically and socially focused study.7

Granting that no duplication of the early, narrow technical his-
tories is necessary—they were meticulous, if unsurprisingly dis-
proportionately anecdotal in character8—how can we describe the
humanities research space separating an early historiography of pro-
gramming languages that is as old as the Fortran, Lisp, Algol, and Co-
bol languages themselves (which originates, that is to say, in the late
1950s), and recent social histories of the software concept as Martin
Campbell-Kelly’s From Airline Reservations to Sonic the Hedgehog: A
History of the Software Industry?9 A clue is to be found, I would suggest,
in an essay by William Paulson entitled “For a Cosmopolitical Philol-
ogy: Lessons from Science Studies,”10 insofar as in that essay, Paulson
suggested the value of bringing science and technology studies (STS)
scholarship into contact with an older literary humanist tradition
of philology: a tradition whose methodologies were globally com-
parative and multilingual, whose mode was the study of texts in
multiple languages (which required intensive study of the languages
themselves), and which was rooted in a specific Western intellectual-
historical tradition, the tradition of secular or historical humanism.
If we set aside this latter tradition (one that STS scholars would surely
understand themselves as sharing with “philologists,” that is, with

length publication to have emerged from “critical code studies,” an undertaking that
Mark C. Marino attempted to distinguish from “software studies” more than a decade
ago. See Mark C. Marino, “Critical Code Studies,” Electronic Book Review, December 4,
2006, http://www.electronicbookreview.com/thread/electropoetics/codology.

7. Mark Priestley, A Science of Operations: Machines, Logic and the Invention of Program-
ming (New York: Springer, 2010), p. 2.

8. See Jean E. Sammet, Programming Languages: History and Fundamentals (Englewood
Cliffs, NJ: Prentice-Hall, 1969); Donald E. Knuth and Luis Trabb Pardo, “The Early De-
velopment of Programming Languages,” in Selected Papers on Computer Languages (Stan-
ford, CA: CSLI Publications, 2003), pp. 1–94; Richard L. Wexelblat, ed., History of Pro-
gramming Languages (New York: Academic Press, 1981); Thomas J. Bergin and
Richard G. Gibson, eds., History of Programming Languages II (New York: ACM Press /
Addison-Wesley, 1996); Thomas J. Bergin, “A History of the History of Programming
Languages,” Communications of the ACM 50: 5 (May 2007): 69–74.

9. See Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History
of the Software Industry (Cambridge, MA: MIT Press, 2004).

10. William Paulson, “For a Cosmopolitical Philology: Lessons from Science Studies,”
SubStance 30:3 (January 2001): 101–119.

Lennon / JavaScript Affogato 51

language and literature scholars), philology’s characteristic mode of
focus, grounded as it is in the mandates of linguistic specificity, even
incommensurability, cannot be described as a great strength or even
necessarily a normal characteristic of scholarship in STS.

From a position close to Paulson’s own, then, one might invite
software studies and so-called critical code studies, as well as STS
itself, to establish an as-yet imagined contact with philology. What,
we might ask, would a philological study—that is, a minimally both
technically and socially oriented historiography—of a specific com-
puter programming language look like? For an example of how this
question might be posed within the disciplinary context of the infor-
mation sciences, rather than within that of the humanities (as I shall
do here), we can consult recent work like Andrew J. Ko’s “What Is a
Programming Language, Really?” “In computing,” Ko remarks, “we
usually take a technical view of programming languages (PL), defin-
ing them as formal means of specifying a computer behavior. This
view shapes much of the research that we do on PL, determining the
questions we ask about them, the improvements we make to them,
and how we teach people to use them. But to many people, PL are
not purely technical things, but socio-technical things.”11 Still, essays
like Ko’s are quite remarkably few and far between, in the domain
of the technical sciences as much as in the social sciences and the
humanities—and often, as in this particular case, perhaps unavoid-
ably perfunctory. Regardless of how we choose to explain it, Ko’s
conclusion in 2016 that “[o]ther agendas, particular those that probe
the human, social, societal, and ethical dimensions of PL, are hardly
explored at all”12 is certainly warranted.13

Java and JavaScript
In December 1995, when Sun Microsystems and Netscape Com-
munications issued a joint press release announcing “JavaScript,

11. Andrew J. Ko, “What Is a Programming Language, Really?,” in Proceedings of the 7th
International Workshop on Evaluation and Usability of Programming Languages and Tools
(New York: ACM Press, 2016), 32–33, at p. 32.

12. Ibid., p. 33.

13. The “politico-social history of Algol” promised by R. W. Bemer, for example, turns
out to be a bibliography with abridged extracts from various primary sources (letters,
meeting minutes, committee resolutions, and so on), many relating to the famously
fractious negotiations of the specification of Algol 60 in particular. It is to that history
of conflict to which the term “politico-social” presumably refers; still, this document is
entirely descriptive and offers no analysis whatsoever. See R. W. Bemer, “A Politico-
Social History of Algol (with a Chronology in the Form of a Log Book),” Annual Review
of Automatic Programming, Annual Review of Automatic Programming 5 (1969): 151–237.

52 CONFIGURATIONS

the Open, Cross-Platform Object Scripting Language for Enterprise
Networks and the Internet,”14 Sun’s Java programming language was
already well on its way to achieving the virtually uncontested market
dominance, comparative prestige, and privilege as an instructional
language that it would enjoy for a decade and more. Though Java
1.0, the first public release, had appeared only the same year, Sun’s
promise of true platform-neutrality and portability for the Java Run-
time Environment was immediately attractive to enterprise software
developers tiring of the demands placed on them by the C and C++
languages then widely in use. Java promised to moderate some of
the complexity entailed by the access both C and C++ provided to
low-level memory management, as well as the specific complexities
introduced by C++ imagined as “C with classes,”15 without reduc-
ing the power and expressivity those languages offered to enterprise
systems programmers specifically. Though it was initially designed
for the lightweight hardware application of embedding in program-
mable consumer appliances, and only later adapted for serving and
embedding in HTML pages, Java was very much a professional’s
language, restrictive in its requirements for data types (being both
statically and strongly typed) and in its promotion of a single pro-
gramming style, the object-oriented programming (OOP) paradigm
it would help popularize, as well as in the verbosity that both these
forms of restriction produced. Presented as a professional alternative
to both C and C++ rather than a radical departure from either, Java’s
relative ease of use included no special claims of approachability for
inexperienced coders or nonprofessionals.

JavaScript was different. Sun and Netscape’s press release used the
word “complementary” three times to describe JavaScript’s relation
to Java: “JavaScript as a complement to Java” (in the document’s sub-
title). “The JavaScript language complements Java.” “[JavaScript is]
complementary to and integrated with Java.” Java, the press release
emphasized, “is used by programmers to create new objects and ap-
plets,” while JavaScript “is designed for use by HTML page authors
and enterprise application developers to dynamically script the be-

14. “Netscape and Sun Announce Javascript, the Open, Cross-Platform Object Scripting
Language for Enterprise Networks and the Internet,” December 1995, https://web.ar
chive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67
.html.

15. Designed by Bjarne Stroustrup while working at AT&T in the late 1970s, C++ was
originally called “C with Classes,” marking Stroustrup’s intention to “superset” the C
language (that is, to remain completely compatible with it) while also improving it. See
Bjarne Stroustrup, “Bjarne Stroustrup’s FAQ,” Bjarne Stroustrup’s Homepage, October
1, 2017, http://www.stroustrup.com/bs_faq.html.

Lennon / JavaScript Affogato 53

havior of objects running on either the client or the server.” If the
mention of “enterprise application developers” and server-side ap-
plications suggested a place for JavaScript in the established industry
of Java development, the sentence that followed better illuminates
how HTML page authors were imagined, and how they imagined
JavaScript’s complementing of Java in a different sense. “JavaScript is
analogous to Visual Basic,” it read, “in that it can be used by people
with little or no programming experience to quickly construct com-
plex applications.”16

From its introduction, JavaScript’s reception by software develop-
ers, and its importance in “web development” as we now understand
it (as an area of either software development or graphic design, de-
pending on whom one asks), was structured by a continuous ne-
gotiation of expertise. Especially today, it is rare to encounter an
introductory tutorial or textbook for beginners that fails to pause to
disambiguate JavaScript from Java before undertaking to cover even
the basics.17 Most often, and especially today, the motive for such
disambiguation is less to clarify the historical relationship of these
two languages than to clear a space for JavaScript by separating it
from association with Java—specifically, with Java’s verbosity and its
object-oriented programming paradigm, and perhaps from Java’s as-
sociation with enterprise application programming, the drudge work
of software engineering—and its diminished presence in the more

16 “Netscape and Sun Announce Javascript” (above, n. 14).

17 See, for example, Jeremy McPeak and Paul Wilton, Beginning Javascript, 5th ed. (In-
dianapolis, IN: John Wiley & Sons, 2015), p. 2: “Perhaps this is a good place to dispel a
widespread myth: JavaScript is not the script version of the Java language. In fact, al-
though they share the same name, that’s virtually all they do share. Particularly good
news is that JavaScript is much, much easier to learn and use than Java.” Even some
classic books on JavaScript written for developers already expert in other languages, or
newer books that address the same kind of reader, frame the issue similarly. In JavaS-
cript: The Definitive Guide, widely considered an authoritative comprehensive study of
JavaScript, David Flanagan begins thus: “The name ‘JavaScript’ is actually somewhat
misleading. Except for a superficial syntactic resemblance, JavaScript is completely dif-
ferent from the Java programming language.” See David Flanagan, Javascript: The De-
finitive Guide, 6th ed. (Sebastopol, CA: O’Reilly Media, 2011), p. 1. In the introductory
volume of a rigorous and well-received multivolume study of contemporary JavaScript,
Kyle Simpson writes, “[T]he name [JavaScript] is merely an accident of politics and
marketing. The two languages are vastly different in many important ways. ‘JavaScript’
is as related to ‘Java’ as ‘Carnival’ is to ‘Car.’” See Kyle Simpson, Up & Going, You Don’t
Know JS (Sebastopol, CA: O’Reilly Media, 2015), p. vii. Douglas Crockford reminds us
of Java and JavaScript’s historical concurrency and does not exaggerate their unrelated-
ness, but has little to say about the issue beyond one sentence: “When Java™ applets
failed, JavaScript became the ‘Language of the Web’ by default.” See Douglas Crockford,
Javascript: The Good Parts (Sebastopol, CA: O’Reilly Media, 2008), p. 1.

54 CONFIGURATIONS

flexible and experimental startup culture of the 2000s and 2010s,
as well. While such gestures are understandable at a moment when
Java’s reputation is more or less clearly in decline,18 they can ob-
scure the historical entwinement of these two languages, with con-
sequences that are regrettable from any but the most purely practical
or instrumental perspective.

I use the term “improvised expertise” to describe both conditions
for and effects of the unanticipated development of JavaScript from a
mere complement to Java, designed for casual and inexpert program-
mers, into a language whose range and complexity of use has now
propelled it ahead of Java in some ways, even (by some measures,
in some domains) where Java once dominated. My argument is that
such “improvised expertise” separates JavaScript at least partly from
other, otherwise similar experiments in making programming acces-
sible to non-experts, from the original BASIC language, developed

18. In response to such claims, Java programmers often point to Java’s leading position
in the TIOBE Programming Community Index compiled by the software services pro-
vider TIOBE Software BV, or similar rankings aggregators like the PYPL Popularity of
Programming Language Index—leaving unmentioned such rankings’ historical “trend”
indexes for Java’s position, which are frequently negative. See Robert McMillan, “Is
Java Losing Its Mojo?,” Wired, January 8, 2013, http://www.wired.com/2013/01/java-
no-longer-a-favorite; and David Cassel, “Evolve or Die: Java, C++ Confront Newcomers
on the TIOBE Index,” The New Stack, March 14, 2016, https://thenewstack.io/evolve-
die-popular-programming-languages-confront-newcomers-tiobe-index, both of whom
argue that TIOBE data itself shows Java’s position “slipping” and “trending down”
(McMillan also quotes Paul Jansen, managing director of TIOBE Software, as stating
that “Java is falling down”). In any case, at any point in the history of a programming
language past the point of its initial adoption, a language’s reputation—as expressive
or otherwise pleasant to use, as adaptable to ongoing hardware evolution, as usable in
solving newer computational problems—may diverge from its market share or other
measures of usage quite radically, if only because once they are in place, large industrial
software infrastructures are kept operating for as long as possible. It is the incongruence
of Java’s reputation with its market share, today, that animates nonmeaningless if pos-
sibly glib comparisons of Java to Cobol, such as that made by Bill Snyder in “Java Is
Becoming the New Cobol,” InfoWorld, December 28, 2007, http://www.infoworld.com/
article/2650254/application-development/java-is-becoming-the-new-cobol.html. The
inclusion in Java version 9 of a REPL (Read-Evaluate-Print-Loop) feature for exploratory
programming is a concession to the encroachment on Java’s position of both scripting
languages and newer functional programming languages, languages in both categories
of which have offered REPL-type features—whose purpose and usage are fundamen-
tally incompatible with Java-style object oriented programming—for many decades.
Arguably, the rise of Scala, Clojure, and other languages designed to run on the Java
Virtual Machine (JVM) and provide access to Java standard libraries, but otherwise
breaking either partly or completely with Java’s imperative syntax and its enforcement
of an object-oriented paradigm, marks the endurance of the JVM as a platform but the
eclipse of Java as a (paradigmatic) language.

Lennon / JavaScript Affogato 55

as an instructional language at Dartmouth College in the 1960s, on-
ward.

The concept of improvised expertise also encapsulates the condi-
tions for and effects of three specific developmental dynamics in
JavaScript’s recent history. First of these is a rapid acceleration in de-
velopment of the language itself, now occurring at such a pace that
ECMAScript, the specification on which JavaScript is based, shifted
in 2015 from using traditional ordinal version numbers for editions
to a year-based designation (so that the official name of ECMAScript
version 6 is now ECMAScript 2015, with new editions to be released
yearly going forward). Second is the recent abrupt emergence and
extremely rapid growth of JavaScript in server-side networking, data
processing, and other so-called back-end development tasks, a do-
main traditionally handled separately from the user-facing, design-
oriented front-end site development that Sun and Netscape’s 1995
press release suggested would be JavaScript’s main use case. Third is
the equally recent and abrupt, yet decisive emergence of JavaScript
as the dominant language of a new generation of dynamic web appli-
cation frameworks (principally Ember.js, AngularJS, and Facebook’s
React, but also Meteor, Express, and others) and the developer tool-
ing suites that support them, in a partial displacement of the Ruby
language-based Rails framework popularized during the late 2000s.

This rapid, largely unanticipated growth in JavaScript’s range of
application and its general importance in the software industry has
even seen it enter elementary computer science instruction as lan-
guage of preference, in some cases displacing Python (which itself
has selectively displaced Java) in the classroom. Here, the phrase
“improvised expertise” marks a paradox: while core JavaScript re-
mains a small, approachable language when abstracted from its main
domains of application, website and application development, using
JavaScript professionally in those domains today is virtually impos-
sible without very substantial, ongoing study of the language’s ad-
vanced features and support for multiple programming paradigms,
as well as of the new JavaScript-based development frameworks and
tooling suites, the frenetic development pace of which virtually en-
sures that they will be replaced by other, newer frameworks and tools
before they emerge from beta status and a commensurate level of
documentation. This ensures that the learning curve for new pro-
fessional JavaScript developers—not to mention the nonprogram-
mers JavaScript was originally designed to serve—will be very, very
steep indeed, and it suggests that sooner or later, JavaScript’s impro-
vised expertise will have some part to play in the disappointments

56 CONFIGURATIONS

of the latest push for “computer science for all” and other economic
management schemes that conflate coding skills with basic literacy
(that is, reading and writing in human languages) and with basic so-
called computer literacy, as well (that is, using both general and do-
main-specific prepackaged software applications effectively). Where
JavaScript’s history as a programming language is in many ways a
routine, if interesting case of simplification producing complexity,
the logic of “coding for all” and its variants are arguably repetitions
of magical thinking about the management of complexity in soft-
ware production itself, with these two dynamics converging in the
historical present.19 In that sense, what we call “JavaScript” is not
just a programming language, and not just a collection of environ-
ments and tooling supporting a programming language, including
specifications and other documentation, implementations, and
primary and secondary program artifacts (from development tools
and frameworks to specific interpreters or “engines,” compilers and
transpilers, and other software components embedded in a browser
or server applications). JavaScript can, at least at the moment and for
the near term, be understood also as an assembly of broader techni-
cal and technical-historical dynamics, labor and management prac-
tices and arrangements, and discourses about education, job train-
ing, and production that privilege technical expertise, but also seek
to generalize it in and for a historical interval.

System and Scripting Languages
The first edition of ECMA-262 (ISO/IEC 16262), Ecma Internation-
al’s specification for ECMAScript, a standard for JavaScript, was pub-
lished in June 1997. Edited by Guy L. Steele Jr., it described ECMA-
Script as a scripting language, defining the latter as “a programming
language that is used to manipulate, customize, and automate the
facilities of an existing system,”20 rather than being used to cre-

19. The difficulties of larger-scale software production are documented by a manage-
ment-oriented literature stretching back to the 1970s. The canonical text, mentioned
previously, is Brooks Jr., The Mythical Man-Month (above, n. 4). See also Robert N.
Britcher, The Limits of Software: People, Projects, and Perspectives (Reading, MA: Addison-
Wesley, 1999); Scott Rosenberg, Dreaming in Code: Two Dozen Programmers, Three Years,
4,732 Bugs, and One Quest for Transcendent Software (New York: Three Rivers Press, 2008);
Gerald M. Weinberg, The Psychology of Computer Programming, silver anniversary ed.
(New York: Dorset House, 1998); and, for useful counterpoint, Ellen Ullman, Close to
the Machine: Technophilia and Its Discontents (New York: Picador / Farrar, Straus & Gir-
oux, 2012).

20. ECMAScript: A General Purpose, Cross-Platform Programming Language. Standard Ecma-
262, June 1997 (ECMA, June 1997), p. 1, http://www.ecma-international.org/publica
tions/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf.

Lennon / JavaScript Affogato 57

ate a new system. It acknowledged that the “existing system” of
ECMAScript’s original design was a World Wide Web page browser
and a Web-based client-server architecture more generally, but also
insisted that the ECMAScript specification had been written with a
variety of possible host environments in mind.21 The first edition of
ECMA-262 was equally pointed, and in some ways more specific, in
emphasizing that “[a] scripting language is intended for use by both
professional and non-professional programmers, and therefore there
may be a number of informalities and built into the language.”22 The
history of what we now call higher-level programming languages is
of course a history of efforts to make programming less arduous for
professional programmers, as operation codes provided mnemonics
for instructions that could otherwise only be expressed in binary,
octal, or other numeric forms, followed by what we now call pro-
gramming languages providing another platform-independent layer
atop the hardware-specific operation codes, a layer still more remote
from numeric encoding and apparently closer to natural language
(then and still today, the English language specifically).

Efforts to make programming accessible to nonprofessionals did
not, as one might expect, lag behind the effort to make program-
ming more convenient for professionals; rather, they were coter-
minous and developed in parallel, not without significant over-
lap. At Dartmouth College, John Kemeny had devised DARSIMCO
(DARtmouth SIMplified COde), “Dartmouth’s first crack at a sim-
ple computer language,”23 a year before the appearance in 1957 of
FORTRAN, the first widely adopted and lasting example of a higher-
level or “third generation” language.24 “Dartmouth students,”
Thomas E. Kurtz recalled in 1978, “are interested mainly in subjects

21. Ibid., p. 2.

22. Ibid., p. 1.

23. Thomas E. Kurtz, “BASIC Session,” in History of Programming Languages, ed. Richard
L. Wexelblat (New York: Academic Press, 1981), p. 516.

24. The most widely used term in both professional software development and the
discipline of computer science is “higher-level language,” a spatial metaphor used to
describe abstraction from the “lower” level of hardware operation codes. Academic
researchers use the historical metaphor of the generation in a similar, if perhaps also
more sensible way: a first generation of purely numerically represented instructions
(“machine code”) is followed by a second generation of mnemonic abbreviations (“as-
sembly language”), followed in turn by compiled, hardware-independent algebraic
syntaxes and keywords and phrases in the English language (“programming language”
as we use the term today). The classification includes a fourth and a fifth generation,
which is beyond my purview here. See James Martin, Application Development without
Programmers (Englewood Cliffs, NJ: Prentice-Hall, 1982).

58 CONFIGURATIONS

outside the sciences,” and most of the future “decision makers of busi-
ness and government” among them were not science students.25 The
rationale for Dartmouth BASIC, or “Beginner’s All-Purpose Symbolic
Instruction Code,” was to provide such students with experience in
writing programs (rather than merely learning about computer use)
without having to understand operation codes “or even FORTRAN
or ALGOL” (the latter another higher-level language developed in
the 1950s), which Kurtz and his colleagues considered “clearly out
of the question. The majority would balk at the seemingly pointless
detail.”26 But the growth of Dartmouth BASIC into an entire family
or class of languages represented its dissemination not only as an
instructional language, but also in some lines of development (such
as that which produced Microsoft’s Visual Basic) as “a production
programming language for professionals” as well.27

Today, terminological usage more or less clearly distinguishes
“scripting” languages from “system programming” languages. Sys-
tem programming languages like C and C++ were designed to abstract
away much of the detail of assembly-language programming (that is,
programming in operation codes) while still leaving the programmer
facilities for manually allocating and de-allocating memory and thus
staying “close to the metal,” as programmers like to say, while enjoy-
ing the benefits of higher-level abstraction where that was preferred
(for example, in syntax for iteration, branching and other control
structures, function calls, and creating and managing collections of
items of data). Managing memory efficiently involves distinguishing
clearly among different data types (primarily, between mathematical
and textual data types) as one makes use of them, so that no more
memory than is needed is allocated for storing an item of data, and
compilers for system programming languages typically enforce such
discipline in the programmer—for example, by refusing to compile
a working executable otherwise. Scripting languages, by contrast, ab-
stract away and automate both data typing and memory allocation
and deallocation, for the convenience of the programmer. This is
partly because they can take for granted the presence of an underly-
ing system programming language and its libraries, for whose com-
ponents they serve as a kind of adhesive or connective tissue, and in
which they themselves are implemented (that is, the interpreter that
provides a scripting language with its execution environment is itself
a system-level language program).

25. Kurtz, “BASIC Session” (above, n. 23), p. 518.

26. Ibid.

27. Ibid., p. 547.

Lennon / JavaScript Affogato 59

Since the 1990s, however, various factors, including the acceler-
ating sophistication of hardware and innovations in programming
language design, have eroded some difference in the performance
of scripting languages relative to system programming languages,
at least in specific environments and for specific applications, and
significant gains have arguably been made in some measures of pro-
grammer productivity. The economy of expression made possible
once memory allocation and data typing are abstracted away can be
fairly dramatic. If code in a system programming language like C is
three to six times shorter, in countable individual instructions, than
its equivalent in assembly language code,28 the same instructions
in a scripting language like Python might be half as long as their
equivalent in C, C++, or Java syntax, and depending on the task pos-
sibly much shorter than that.

Other Contexts
Although it took nearly two decades, it was JavaScript rather than
Java itself that made good on the promise of programmable Web
pages and the browser application as a distributed multiplatform
environment. As HTML-based Web publication promised to disrupt
local monopolies of print publishers, JavaScript promised inexpert
programmers access to a scriptable environment, while Java was to
do the heavier lifting. In one of many interesting early formulations,
the Web was imagined as a “shell” for interactive application devel-
opment, by analogy with the AI-oriented “expert system” shells de-
veloped for use with Lisp and Prolog and marketed for rapid applica-
tion prototyping in Java and other languages.29 But the popularity of
the Web was also used to justify the teaching of JavaScript to novices
and as a “precursor to Java.”30

28. J. K. Ousterhout, “Scripting: Higher Level Programming for the 21st Century,”
Computer 31:3 (1998): 23–30, at p. 24.

29. See Alison Lee and Andreas Girgensohn, “Developing Collaborative Applications
Using the World Wide Web ‘Shell,’” in CHI EA ’97 CHI ’97 Extended Abstracts on Human
Factors in Computing Systems (New York: ACM Press, 1997), pp. 144–145, at p. 144.

30. See Robert Ward and Martin Smith, “Javascript as a First Programming Language for
Multimedia Students,” ACM SIGCSE Bulletin 30:3 (September 1998): 249–253, at p. 249:
“The World-Wide Web is increasingly influencing the teaching of Computing Science
and associated subjects, and Web-related programming topics are now appearing in
many syllabuses. Whilst in this respect there has been much development and discus-
sion of Java as a first programming language with many text books now available, Ja-
vaScript has been comparatively ignored. . . . We propose here that JavaScript is suffi-
ciently rich in concepts to support the teaching of introductory programming, and
that it is especially suitable for Multimedia students.” See also Rebecca Mercuri, Nira
Herrmann, and Jeffrey Popyack, “Using HTML and JavaScript in Introductory Program-

60 CONFIGURATIONS

The fading of Java’s promise as a browser language did not im-
mediately elevate JavaScript. One writer of the late 1990s correctly
anticipated the development of browser-independent implementa-
tions of JavaScript (fully realized in 2009 with Node.js, discussed be-
low), but incorrectly expected JavaScript to be displaced by Perl as
a browser scripting language.31 Today, after twenty years of empha-
sis on JavaScript’s role in client-side web development (that is, on
the software browser’s presentation of data to the user), it is seldom
remembered that Netscape Communications had explored server-
side applications for JavaScript from the start. This is clear from the
language of the 1995 joint press release with Sun, which specified
that “JavaScript is an easy-to-use object scripting language designed
for creating live online applications that link together objects and
resources on both clients and servers,” and that it was “designed for
use by HTML page authors and enterprise application developers to
dynamically script the behavior of objects running on either the client
or the server.”32

Still, it is not difficult to identify in retrospect some conditions that
arguably later served JavaScript’s explosive growth, including devel-
opments virtually coterminous with its first appearance. On April
30, 1995, the US National Science Foundation’s NSFNET, a publicly
funded network of supercomputer centers and telecommunications

ming Courses,” ACM SIGCSE Bulletin 30:1 (March 1998): 176–180, at p. 176: “Here we
report on a course designed to exploit students’ burgeoning interest in the World Wide
Web (WWW), where we used HTML and JavaScript to teach programming concepts.
These languages allow students at different skill levels to work side by side, learning
common abstract ideas while implementing them at different levels of complexity,
motivated by the rewarding and exciting interactive environment of the WWW.”

31. See Aaron Weiss, “JavaScripting into the Next Millenniun,” netWorker 3:4 (Decem-
ber 1999): 34–35, at p. 35: “As a programming language alone, JavaScript’s main appeal
has been its simple learning curve, but to more experienced programmers it lacks seri-
ous muscle-power. There are sharks in these waters—established, mature programming
languages such as Perl can now be embedded into some Web browsers. . . . For a sea-
soned developer, the prospect of combining client-side Perl—with its agile handling of
advanced programming models—with access to the DOM would be lethal to JavaScript.
We will likely see the migration of other scripting language into the Web client as well,
including Python, TCL, SmallTalk, and perhaps more.”

32. “Netscape and Sun Announce Javascript” (above, n. 14; emphasis added). On the
early history of Netscape, see Robert Reid, Architects of the Web: 1,000 Days That Built
the Future of Business (New York: John Wiley & Sons, 1997); Michael A. Cusumano and
David B. Yoffie, Competing on Internet Time: Lessons from Netscape and Its Battle with
Microsoft (New York: Free Press, 1998); Joshua Quittner and Michelle Slatalla, Speeding
the Net: The Inside Story of Netscape and How It Challenged Microsoft (New York: Atlantic
Monthly Press, 1998); and Jim Clark, Netscape Time: The Making of the Billion-Dollar
Start-Up That Took On Microsoft (New York: St. Martin’s Press, 1999).

Lennon / JavaScript Affogato 61

backbones serving academic research, was decommissioned, and the
Internet as we know it today, unthinkable without private telecom-
munications carriers and Web-facilitated “e-commerce” and “B2B”
or business-to-business transaction activity (to use two terms com-
mon in the mid- to late 1990s), began to take shape. America Online
and Prodigy, up to that point private “online service” providers, also
began offering access to the open Web. When the “Guide to the
World Wide Web” created by Stanford graduate students Jerry Yang
and David Filo was rebaptized “Yahoo!” and acquired the yahoo.com
Web domain, large-scale Web indexing as a service was born.

Financial speculation linked to all these developments drove
the Dow Jones Industrial Average past the 4,000-point threshold in
February 1995 and the 5,000-point threshold in November, making
two historic transitions in a single year. In this context, we are justi-
fied in remarking the larger context of the moment when JavaScript
emerged as an instance of what I am calling “improvised expertise.”
Facilitated by new consumer-friendly electronic financial networks
and services, so-called day trading by individual small investors
would grow by the late 1990s into a widely publicized pastime. Day
traders responded rapidly to intraday price movements and sought
out (as well exacerbated) price volatility, buying and holding stocks
for as little as a few minutes at a time and making a point of closing
their positions at the end of each day. Commercial service centers
opened to provide such traders with the network and PC hardware,
software, and data and financial services then unavailable to home
PC users. As a mode of improvised expertise permitting individual,
often inexperienced and inexpert speculators to bypass both the au-
thority and the fees of stockbroker and other expert (or at least certi-
fied) financial service providers, day trading was associated with the
volatility of so-called Internet stocks and the improvised company
creation and management practices of the dot-com bubble, and it
was famous for the financial disasters such securities inflicted on
day traders themselves, long before they triggered a US economic
recession.33

The opening of securities markets to a new class of investor whose
expertise was improvised, at best, was not the only significant eco-
nomic event of 1995 and the years following it. It was in February
1995 that the 233-year-old Barings Bank, one of the world’s oldest
surviving financial institutions, collapsed due to losses incurred by
a single Singapore-based derivatives trader who relied on the global

33. See Walter Hamilton, “Hooked on Speed: How Day Trading Works,” Los Angeles
Times, February 21, 1999, http://articles.latimes.com/1999/feb/21/business/fi-10174.

62 CONFIGURATIONS

distribution of Barings’s operations help him evade scrutiny of his
activities. Billionaire business publishing executive Steve Forbes
launched his campaign for the 1996 Republican presidential nomi-
nation, refusing matching funds from the US Federal Election Com-
mission to avoid any obstruction in expending his personal wealth,
a decision that would change US national electoral campaign fi-
nancing for good by removing the relative financial restraint im-
posed by FEC funds matching. Also in 1995, a new, fully formal-
ized international institution, the World Trade Organization (WTO),
replaced the treaty structure known as the General Agreement on
Tariffs and Trade (GATT) that dated to the end of the Second World
War—an event that might be understood as economically stabiliz-
ing, were it not for the prompt eruption of disputes between de-
veloped and developing-economy members (the as-yet unresolved
“Singapore issues”) and the attention of antiglobalization activists,
which would culminate in violent street protests at the 1999 Seattle
conference.

1995 was not an uneventful year politically, either. US national
political volatility increased as Speaker of the US House of Repre-
sentatives Newt Gingrich, capitalizing on Republican success in the
1994 midterm elections, finished crafting the insurgent conservative
legislation known as the Contract with America and forced the first
of a series of US federal government closures in a dispute with Presi-
dent Bill Clinton. The nearly two-decade-long bombing campaign of
Theodore John “Ted” Kaczynski, a former University of California,
Berkeley mathematician who had simultaneously renounced mod-
ern technology and taught himself to construct primitive explosives
(and who had targeted academic scientists and computer stores in
particular) culminated with a series of explanatory letters and the
publication of the so-called “Unabomber Manifesto” by the New York
Times and the Washington Post. And Timothy McVeigh and Terry
Nichols destroyed the Alfred P. Murrah Federal Building in Okla-
homa City with a truck bomb in the United States’ most significant
act of domestic terrorism then and since.

While such details merely share a broad historical context with
my topic of focus in this essay, the history of the JavaScript program-
ming language, each of these details, from the emergence of newly
privatized and newly publicly accessible Internet services, new eco-
nomic governance institutions, and a new class of inexpert financial
speculators, to what are still remembered today as very significant
acts of domestic terrorism, involved conflicts and negotiations of
technical expertise, in a broad sense, and some of them were marked

Lennon / JavaScript Affogato 63

by such conflicts and negotiations in the narrower sense relating
specifically to computers, as well. In that sense, that broader context
cannot be separated entirely from my topic here.

JavaScript as Multiparadigm Programming Language
The Java-like language that Brendan Eich was commissioned to de-
sign for the Netscape Navigator web browser in 1995 (a task that he
reportedly completed in ten days) was initially named Mocha and
then LiveScript. It acquired the name JavaScript with the joint press
release issued by Sun and Netscape in December of that year, which I
have already mentioned. In the two decades since, Java applets have
almost completely vanished from the web, and it is JavaScript that
provides the main interactive element in browser pages. Sun and
Netscape’s joint press release reminds us just how far our current
situation today is from the expectations they articulated in 1995.
Though some of the rhetorical choices made in this text are perhaps
more directly reflective of competition and licensing conflicts than
anything else, it is worth dwelling on just how closely the respective
domains of Java and JavaScript were positioned at the time:

The JavaScript language complements Java, Sun’s industry-leading object-ori-
ented, cross-platform programming language.

JavaScript is an easy-to-use object scripting language designed for creating
live online applications that link together objects and resources on both cli-
ents and servers. While Java is used by programmers to create new objects and
applets, JavaScript is designed for use by HTML page authors and enterprise
application developers to dynamically script the behavior of objects running
on either the client or the server.

“Programmers have been overwhelmingly enthusiastic about Java because
it was designed from the ground up for the Internet. JavaScript is a natural fit,
since it’s also designed for the Internet and Unicode-based worldwide use,”
said Bill Joy, co-founder and vice president of research at Sun. “JavaScript will
be the most effective method to connect HTML-based content to Java
applets.”34

Java would be used to create code objects including applets (that
is, small applications), and JavaScript programs would connect such
objects and script (that is, configure and control) their behavior,
providing them with a HTML-based user interface. If this particular
separation of roles (Java as application programming language vs. Ja-

34. Quotations are all from the same source: “Netscape and Sun Announce Javascript”
(above, n. 14).

64 CONFIGURATIONS

vaScript as scripting language) is clear, the attention the press release
also devotes to “server-side JavaScript” may cloud it somewhat:

With JavaScript, an HTML page might contain an intelligent form that per-
forms loan payment or currency exchange calculations right on the client in
response to user input. A multimedia weather forecast applet written in Java
can be scripted by JavaScript to display appropriate images and sounds based
on the current weather readings in a region. A server-side JavaScript script
might pull data out of a relational database and format it in HTML on the fly.
A page might contain JavaScript scripts that run on both the client and the
server. On the server, the scripts might dynamically compose and format
HTML content based on user preferences stored in a relational database, and
on the client, the scripts would glue together an assortment of Java applets
and HTML form elements into a live interactive user interface for specifying a
net-wide search for information.

Java programs and JavaScript scripts are designed to run on both clients
and servers, with JavaScript scripts used to modify the properties and behavior
of Java objects, so the range of live online applications that dynamically pres-
ent information to and interact with users over enterprise networks or the
Internet is virtually unlimited. Netscape will support Java and JavaScript in
client and server products as well as programming tools and applications to
make this vision a reality.35

While there is no reason that two server-side programs (or for that
matter, entire code bases) cannot maintain such distinctly comple-
mentary roles as are imagined here, the question of whether JavaS-
cript might someday be able to perform alone in both such roles
seems already latent in these formulations. Indeed, there exist un-
ambiguous records of the tension around this issue, which it does
not require much imagination to find in some of the joint press
release’s strained locutions, which read like a parent ordering two
sibling children to get along. As Eich has put it, “If I had done classes
in JavaScript back in May 1995, I would have been told that it was
too much like Java or that JavaScript was competing with Java. . . . I
was under marketing orders to make it look like Java but not make
it too big for its britches. . . . [JavaScript] needed to be a silly little
brother language.”36 Given that Java was already established, some at
Netscape did not initially see any benefit in establishing and main-
taining a separate language.37

35. Ibid.

36. Quoted in “Computing Conversations with Brendan Eich,” YouTube video, 12:00,
posted January 24, 2012, https://www.youtube.com/watch?v=IPxQ9kEaF8c.

37. Ibid.

Lennon / JavaScript Affogato 65

Under such conditions, it is unsurprising that JavaScript was
designed and implemented in haste, and with the hope that its
shortcomings could be addressed in continued development. Eich
brought a great deal of both organic and improvised expertise to
bear on JavaScript’s design. On the one hand, JavaScript’s syntax is
derived from the systems programming language C, by way of Java’s
own C-like syntax. On the other hand, Eich modeled JavaScript fea-
tures like first-class functions and function closure on their equiva-
lents in Scheme, a dialect of Lisp and so a member of a very different
programming language family. Eich also adapted the prototype-
based inheritance model of Self, a dialect of Smalltalk (a language
and integrated programming environment designed in the 1970s
for instructional and expressive computing), to provide JavaScript
with object-oriented programming features. In combining these
three quite different models—procedural or imperative in the case
of C and Java, functional in the case of Scheme, and object-oriented
in the case of Self—Eich made JavaScript a multiparadigm language
from the very start.

Although JavaScript was not the first such multiparadigm lan-
guage, such a synthesis is nontrivial in the design labor involved and
in the prospects that JavaScript still presents for study even today.
In synthesizing the three major programming paradigms, JavaScript
certainly incorporated more complexity, even at the start, than most
people would consider necessary in a language designed for novice
and inexpert programmers. For novices, learning one programming
model at a time (or only one model at all!) would certainly be con-
sidered more than enough. The tension between the design expertise
that Eich brought to bear in creating JavaScript and its promotion as
a language for inexpert users is especially interesting in Eich’s own
statements, which wholeheartedly endorse such promotion:

[W]hat people wanted back then (and still want) is the ability to go one step
beyond HTML and add a little bit of code that makes a web page dynamic—
that makes things move, respond to user input, or change color; that makes
new windows pop up; or that raises a dialog box to ask a question, with an
answer necessary to proceed—things that HTML cannot express. That’s really
where you need a programming language, but something simpler than Java or
C++. Content creation should not be recondite. It should not be this bizarre
arcana that only experts and gold-plated computer science gurus can do.38

38. Marc Andreessen, “Innovators of the Net: Brendan Eich and Javascript,” June 24,
1998, https://web.archive.org/web/20080208124612/http://wp.netscape.com/com
prod/columns/techvision/innovators_be.html.

66 CONFIGURATIONS

JavaScript as Translational Programming Language
Despite borrowing most of its syntax from C and Java, JavaScript can
certainly be written in a way that makes it resemble Scheme (see fig.
1). To its explicit synthesis of multiple programming models or para-
digms (procedural or imperative, functional, and object-oriented),
and to the divergent idiomaticity facilitated by the incorporation
of features from very different languages, whose syntactic expres-
sions may deform JavaScript’s basically C-like syntax, we must add
two other “multilingual” contexts for the development of JavaScript
from 1995 to the present. The first is the development of the EC-
MAScript standard, implementations of (and deviations from) the
standard in major web browsers, and the ongoing, both forward and
backward “translation” by which the development of the standard,
its implementation in browsers, and its use in web programming are
mediated. The second is the compilation of JavaScript to other, often
non-related programming languages. I will describe each in turn.

I have already mentioned the first edition of ECMA-262 (ISO/IEC
16262), Ecma International’s specification for ECMAScript, which
described ECMAScript as a scripting language “intended for use by
both professional and non-professional programmers.”39 There exist
seven published editions to date (ECMAScript 1, 2, 3, 5, 5.1, 6, and
7, excluding ECMAScript 4, which was abandoned), and the first
edition’s emphasis on design for nonprofessional users was retained
all the way through the fifth edition published in 2009. The third
edition published in 1999 included minor changes to the initial
paragraphs of the section entitled “Overview” (section 4), changing
“A scripting language is intended for use by both professional and
non-professional programmers, and therefore there may be a num-
ber of informalities built into the language” to “A scripting language
is intended for use by both professional and nonprofessional pro-
grammers. To accommodate non-professional programmers, some
aspects of the language may be somewhat less strict.”40 The fifth
edition published in 2009 deleted the latter sentence, leaving only
“A scripting language is intended for use by both professional and
nonprofessional programmers.”41

39.ECMAScript (above, n. 20), p. 1.

40. ECMAScript Language Specification: Standard ECMA-262, 3rd ed. (ECMA, December
1999), p. 1, http://www.ecma-international.org/publications/files/ECMA-ST-ARCH
/ECMA-262,%203rd%20edition,%20December%201999.pdf.

41. ECMAScript Language Specification: Standard ECMA-262, 5th ed. (ECMA, December
2009), p. 2, http://www.ecma-international.org/publications/files/ECMA-ST-ARCH
/ECMA-262%205th%20edition%20December%202009.pdf.

Lennon / JavaScript Affogato 67

The sixth edition published in 2015 made much more signifi-
cant changes, which put meaningful distance between JavaScript’s
history and its present. To the paragraph defining a scripting lan-
guage, a new sentence was prepended: “ECMAScript was originally
designed to be used as a scripting language, but has become widely
used as a general purpose programming language.”42 An entirely
new paragraph was added elaborating this point: “ECMAScript us-
age has moved beyond simple scripting and it is now used for the
full spectrum of programming tasks in many different environments
and scales. As the usage of ECMAScript has expanded, so has the
features and facilities it provides. ECMAScript is now a fully featured
general purpose programming language.”43 Since the end of the ten-
year interval separating the third and fifth editions, which saw the
development and then abandonment of a fourth edition, feature
addition has been rapid and extensive, with the fifth edition in 2009
and the sixth in 2015 both adding significant new features. After
the long, partly fallow interval from 1999 to 2009, this rapid pace
of development stimulated the development of a culture of experi-
mental implementation in which features still only in proposed or
only partially and nonbindingly approved form, in published drafts
and other documents relating to the ECMAScript specification, were
included in beta or developer versions of major web browsers, and

42. ECMAScript Language Specification: Standard ECMA-262, 6th ed. (ECMA, June 2015),
http://www.ecma-international.org/ecma-262/6.0/.

43. Ibid.

function Y(le) {
 return (function (f) {
 return f(f);
 }(function (f) {
 return le(function (x) {
 return f(f)(x);
 });

 }));

}

Figure 1. The applicative order Y combinator, from Daniel P. Friedman and Matthias
Felleisen, The Little Schemer,1 implemented by Douglas Crockford in JavaScript.2

1. Daniel P. Friedman and Matthias Felleisen, .The Little Schemer, 4th ed. (Cambridge,
MA: MIT Press, 1996).

2. “The Little JavaScripter,” Douglas Crockford’s World Wide Web, 2003, http://www.
crockford.com/javascript/little.html.

68 CONFIGURATIONS

eventually even in some user versions. Even before reaching a de-
veloper version of a web browser like Google Chrome, such features
found their way into use through the mediation of source-to-source
compilers (also called transcompilers or transpilers) that rewrote Ja-
vaScript code using experimental features in a form compliant with
previously published editions of the ECMAScript specification (and
thus guaranteed to work in user versions of browsers). At the same
time, as other browser vendors (Microsoft with its Internet Explorer
browser, and to a lesser extent Apple with its Safari browser) failed to
implement all the features in already published past editions of the
ECMAScript specification, transpilation was used to make JavaScript
code uniformly executable across browser platforms.

Source-to-source compilation is as old as the history of higher-
level programming languages themselves, with examples dating all
the way back to the 1950s. The especially vigorous, even frenetic
pace of such activity in web development and other JavaScript pro-
gramming today merely hyperanimates the long history of transla-
tion metaphors through which the history of digital computing itself
can be traced.44 Yet JavaScript programming may well be unique and
unprecedented in the range and scale of such activity, if not in its
mere fact. It is appropriate indeed that the most widely used source-
to-source JavaScript compiler used to rewrite JavaScript code to con-
form to different ECMAScript specifications has the name Babel.45

We have not mentioned the many other programming languages
that provide the option to transpile to JavaScript in addition to their
original targets. An authoritative list includes not only many vari-
ants best described as JavaScript subsets, supersets, or extensions
(many of them with names relating to coffee, such as the large Cof-
feeScript family), but compilers that will take in code in C/C++, Java,
Perl, Python, Ruby, C#, Scala, Clojure, OCaml, Haskell, and other
both major and minor, older and newer languages and rewrite it in
JavaScript.46 Here too, it is unlikely that anything else of this range
and scale has ever been seen in the history of software program-
ming. In a domain that is and has always been defined by constant
translation, JavaScript programming culture can be distinguished as
exceptionally translational.

44. See David Nofre, Mark Priestley, and Gerard Alberts, “When Technology Became
Language: The Origins of the Linguistic Conception of Computer Programming, 1950–
1960,” Technology and Culture 55:1 (2014): 40–75.

45. “Babel: A Compiler for Writing Next Generation Javascript,” Babel, 2016, https://
babeljs.io/.

46. Jeremy Ashkenas, “List of Languages That Compile to JS,” GitHub, 2016, https://
github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-JS.

Lennon / JavaScript Affogato 69

Node.js
A major, perhaps the major factor in the rapid expansion of JavaS-
cript’s domain is the Node.js project, which dates to 2009. Node.js
is a JavaScript runtime environment disembedded from the browser
software application and written much as scripting languages like
Python and Ruby are written: a developer may use command-line
utilities, including a REPL (Read-Eval-Print Loop) and debugger,
along with a software application text editor or Integrated Develop-
ment Environment (IDE) to write and test programs locally on her
or his own computer, but outside the browser application environ-
ment. The Node.js interpreter can run on a server, as well as on a
desktop PC and in other software and networking contexts, and it
can be embedded in a wide range of computing devices. While the
earlier popularization of so-called Ajax (Asynchronous JavaScript
and XML) programming techniques, closely associated with Google’s
Maps products, certainly got the ball rolling in this respect, it may
be Node.js more than any other single factor that has transformed
JavaScript from a scripting language initially used disproportion-
ately to create “annoyances” like browser pop-up windows47 into
something approaching a full-fledged systems programming lan-
guage. Arguably, the Node.js project has revived, reactualized, and
then realized the promise of the forgotten chapter of JavaScript’s
history marked by Netscape’s early imagination and exploration of
server-side JavaScript applications. For the first time since the appear-
ance of the World Wide Web and the software browser application,
Node.js unifies so-called front-end and back-end web development,
so that so-called full-stack developers, who write code for both user-
facing and data processing components of an application, can use a
single programming language for both tasks.

The applications of Node.js go beyond the server (though in that
context, we should also mention the displacement of XML, as used
in the earliest Ajax techniques, by the JavaScript-associated JSON
[JavaScript Object Notation] data exchange format). Web application
frameworks written in Node (Express.js and Meteor are two of the
best known) have eroded the popularity of Rails, the Ruby-based ap-
plication framework that dominated web development from the late
2000s onward. The Node-based Electron framework is increasingly
used to develop platform-agnostic desktop GUI applications (that is,
conventional applications that a user downloads and runs on her or
his own machine, rather than using in a browser window). Node’s
popularity also explains Apple’s inclusion in 2015 of JavaScript as
one of the operating system languages of macOS (formerly OS X), us-

47. “Computing Conversations with Brendan Eich” (above, n. 36).

70 CONFIGURATIONS

able for interapplication communication, as well as the inclusion of
JavaScript “bridges” in the Apple iOS and Google Android operating
systems for mobile platforms, enabling compilation to a JavaScript
bound to the native system programming languages of those plat-
forms (C, C++, Objective C/Swift, and Java).

The Frameworks
For the reasons mentioned above, it is Node.js, more than anything
else, that has driven the recent hyperprofessionalization of JavaScript
programming, removing the language quite decisively from that
portion of its design origins that emphasized accessibility to inexpert
and nonprofessional programmers. A development separate from
the Node.js project, but of nearly equal impact on both JavaScript’s
expansion and its hyperprofessionalization, is the proliferation of
other JavaScript-based web application frameworks not directly de-
signed for or implemented in Node. The Ember.js, AngularJS, and
React frameworks provide web developers with very sophisticated,
unified abstractions of the three core browser technologies (HTML,
CSS, and client-side JavaScript itself) that have made possible great
leaps in both the sophistication of web applications and the creativ-
ity and productivity of those who write them. But they have also
quite decisively propelled web development beyond the domain of
accessibility imagined for the Web when it first appeared, which may
have persisted in real terms for as long as ten years after 1995, in the
sense that wage-earning web programming techniques could still be
learned through casual and part-time training or retraining.

The professional construction and maintenance of websites today
require both initial and ongoing training, and require a level of skill
maintenance and retraining, that put them well out of reach for vir-
tually anyone who is unable to devote her- or himself to its full-time
pursuit—even academic researchers, excepting those who study and
teach web technologies as a well-defined and well-developed techni-
cal research specialty. It is not the mere passage of time that makes
the humanities-based wave of emancipatory hypertext theory of the
1990s, for example, seem so quaint,48 and makes its reinstantiation
in the present “digital humanities” movement seem so disingenuous
or so guileless, depending on whom one asks. It is not that JavaScript
no longer stands for technical improvisation, but that in what I have
been calling improvised expertise, expertise is now both unambigu-

48. See, for example, George P. Landow, Hypertext: The Convergence of Contemporary
Critical Theory and Technology, Parallax (Baltimore: Johns Hopkins University Press,
1992).

Lennon / JavaScript Affogato 71

ously and unambivalently the agent of improvisation, instead of its
object.

JavaScript Fatigue—and Other Futures
This shift has not been universally (or even broadly) welcomed. In-
deed, the frenetic pace of change, if not the levels of skill required,
is clearly a burden even to well-trained and experienced full-time
professional developers. In early 2016, the phrase “JavaScript fa-
tigue” began appearing in social media posts, blog writing, podcast
discussion, and discussion at professional JavaScript developer con-
ferences and briefly dominated such discussions as a collective pre-
occupation.49 The developer who began circulating the phrase had
lamented the “confusing nest of build tools, boilerplate, linters, &
[other] time-sinks” that the individual and combined profusion of
new language features, transpilers, frameworks, and other developer
“tooling” (that is, custom applications for various programming
tasks) represented: an entire preliminary phase of assessment and
labor that was required before a JavaScript web application could
even begin to be designed.50

It is this profusion, which many JavaScript developers find suffo-
cating, that my intentionally lighthearted title “JavaScript Affogato”
is intended to name, referring to the Italian dessert consisting of
ice cream or other sweets “drowned” in espresso coffee.51 A soberer
assessment would be bound to remind us that at some level, howso-
ever mediated, this hypertrophy of labor, and all the structural and
personal strains that go with it, reflect or perhaps coconstitute the
extensive economic violence of the interval beginning in 2008 and
continuing to this day. Professional programmers have been among
the few labor-market beneficiaries of an era of austerity and general-
ized economic pain and suffering, and such luck is nothing if not
equally a curse. Certainly the significant priority placed on JavaScript,
in particular, and its concomitant growth during this period, reflects
the priorities declared by investment patterns focused on the user-
facing “app” as a cultural token, associated with making and build-

49. See Eric Clemmons, “JavaScript Fatigue,” Medium, December 26, 2015, https://me
dium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.c0ve3n241; and Calvin
French-Owen, “The Deep Roots of Javascript Fatigue,” Segment Blog, March 15, 2016,
https://segment.com/blog/the-deep-roots-of-js-fatigue/.

50. Clemmons, “JavaScript Fatigue” (above, n. 51).

51. “JavaScript Affogato” is a variation on (and homage to) the witty phrasing of Regi-
nald Brathwaite in a series of advanced, theoretically sophisticated books on JavaScript.
See Reginald Braithwaite, JavaScript Allongé (Leanpub, 2013); and JavaScript Spessore
(Leanpub, 2015).

72 CONFIGURATIONS

ing things as “free” labor (free as in freedom) and adaptation to aus-
terity, and as a new object of financial engineering.

In 2014, Brendan Eich’s resignation as CEO of the Mozilla Cor-
poration, only nine days after taking the position, was described by
a writer for the New Yorker as “the least surprising C.E.O. departure
ever,” given that Silicon Valley was “a region of the business world
where social liberalism is close to a universal ideology.”52 (Eich’s hav-
ing donated to an anti-marriage equality campaign supporting Cali-
fornia’s ballot Proposition 8 in 2008 was a fact known beforehand,
which became newly controversial upon Eich’s appointment.) It
might be more accurate to say that in a broader context, the episode
reflects the fundamental confusion of the specifically cyberlibertar-
ian politics of Silicon Valley investment and management culture,
which borrows ideas freely, but mostly unreflectively and unsynthet-
ically from both statist left-wing and anti-statist right-wing political
platforms, in ways that seem to reflect the startup culture’s ambiva-
lence about its own expertise. Though a great deal of work remains to
be done to articulate the meaning such contexts lend to topics such
as my own, in this essay, such social dynamics cannot be delinked
from the technical history of the artifacts designed and produced in
contexts determined by them—even, or perhaps especially, such an
artifact as a programming language.

52. James Surowiecki, “How Mozilla Lost Its C.E.O.,” New Yorker, April 4, 2014, http://
www.newyorker.com/business/currency/how-mozilla-lost-its-c-e-o.

