Shell
Source: CS:APP3e, Bryant and O’Hallaron, Shell Lab (from Lab Assignments), using the downloadable self-study “handout.”
The task is to implement the following unimplemented functions in the
file tsh.c
:
void eval(char *cmdline);
int builtin_cmd(char **argv);
void do_bgfg(char **argv);
void waitfg(pid_t pid);
Plus three signal handlers:
void sigchld_handler(int sig);
void sigtstp_handler(int sig);
void sigint_handler(int sig);
Other constraints: check the return value of every system call.
Models for eval()
, builtin_cmd()
, and waitfg()
are provided in CSAPP.
- Implemented functions
- Testing
- Entirety of shell code, including both provided and implemented functions
Implemented functions
eval()
Evaluate the command line that the user has just typed in.
If the user has requested a built-in command (quit
, jobs
, bg
or fg
)
then execute it immediately. Otherwise, fork a child process and run the job
in the context of the child. If the job is running in the foreground, wait for
it to terminate and then return. Note: each child process must have a unique
process group ID so that our background children don’t receive SIGINT
(SIGTSTP
) from the kernel when we type Ctrl-c
(Ctrl-z
) at the keyboard.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
void eval(char * cmdline) {
char * argv[MAXARGS]; // Holds result of `parseline(buf, arg)`
char buf[MAXLINE]; // Buffer for command line
int bg; // Foreground/background status
pid_t pid; // Process ID
// Setup for using `sigprocmask` to block SIGCHLD signals before
// forking.
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGCHLD);
// Parse `cmdline` to produce an argument array. `parseline()`
// detects the ampersand '&' character used to signify a
// background job and returns true (1) in that case, otherwise
// false (0). We assign that return value to our own local
// variable `bg`, which also indicates foreground or background
// status.
strcpy(buf, cmdline);
bg = parseline(buf, argv);
// Terminate on EOF.
if (argv[0] == NULL) return;
// Execute `builtin_cmd(argv)` and test its return status. If
// false (0), we're not dealing with a built-in shell command,
// so we need to create a job for this command line and a child
// process to execute it.
if (!builtin_cmd(argv)) {
// Block SIGCHLD signals before forking the child, to avoid a
// a race condition in which the child is reaped before the
// parent calls `addjob`.
if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1) {
unix_error("sigprocmask: error blocking SIGCHLD signals");
return;
}
// Now fork, creating a child process.
int pid_ret = (pid = fork());
if (pid_ret == -1) {
unix_error("fork error");
exit(0);
}
// If the child process was successfully created, invoke
// `execve()` to run the program invoked by the shell command
// line.
if (pid_ret == 0) {
// First, create a new process group whose group ID is
// identical to the child's PID, and put the child process
// in this new process group. We do this to prevent
// Ctrl-c from sending a SIGINT signal to the shell plus every
// process the shell has created. Instead, the SIGINT signal
// will be sent only to the process group containing the
// foreground job.
if (setpgid(0, 0) == -1) {
unix_error("setpgid error");
}
// Now we can run the program invoked by the shell command
// in our new child process. Test the return value so we
// notify the shell user when a non-existent command has
// been invoked.
if (execve(argv[0], argv, environ) == -1) {
printf("%s: Command not found\n", argv[0]);
exit(0);
}
}
// Add the job with the foreground/background status indicated
// by `parseline`.
addjob(jobs, pid, (bg ? BG : FG), cmdline);
// Now that the job has been added, the danger of a race
// condition has passed. We can unblock SIGCHLD signals,
// then manage the job as follows:
// - If job is a foreground job, wait for it to terminate.
// - If job is a background job, print its job and process IDs
// along with the string representing it as a command.
if (sigprocmask(SIG_UNBLOCK, &mask, NULL) == -1) {
unix_error("sigprocmask: error unblocking SIGCHLD signals");
}
if (!bg) waitfg(pid);
else printf("[%d] (%d) %s", pid2jid(pid), pid, cmdline);
}
return;
}
builtin_cmd()
If the user has typed a built-in command then execute it immediately.
Based on the model in CSAPP3E §8.4. eval()
forks a process if the command is
not a built-in command, so we need to return an integer value of 1 in the case
of “jobs”, “bg”, and “fg”.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
int builtin_cmd(char ** argv) {
if (!strcmp(argv[0], "&")) return 1; // ignore singleton `&`
if (!strcmp(argv[0], "quit")) exit(0);
if (!strcmp(argv[0], "jobs")) {
listjobs(jobs);
return 1;
}
if (!strcmp(argv[0], "bg") || !strcmp(argv[0], "fg")) {
do_bgfg(argv);
return 1;
}
return 0; // if `argv` is not a built-in command
}
do_bgfg()
Execute the builtin bg and fg commands.
First, since a job can be identifed by either a job ID or a process
ID, we need to detect each format. Either ID will consist of string
input from the shell command line, which we must convert to an
integer. Once we have the job ID or process ID, we use getjobjid()
or getjobpid()
to retrieve the job from the jobs list, and kill()
to restart any stopped jobs. Finally, we update the job state
and perform other actions as appropriate.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
void do_bgfg(char ** argv) {
struct job_t * j;
// If "fg" or "bg" is missing, print an error and return.
if (!argv[1]) {
printf("%s command requires PID or %%jobid argument\n", argv[0]);
return;
}
// If the argument begins with '%', it denotes a job ID.
if (argv[1][0] == '%') {
// Convert the string representing the job id to an integer.
int jid = strtol(argv[1] + 1, NULL, 10);
if (!jid) {
printf("%s command requires PID or %%jobid argument\n", argv[0]);
return;
}
// Retrieve the job from the jobs list.
j = getjobjid(jobs, jid);
if (!j) {
printf("%s: No such job\n", argv[1]);
return;
}
// Otherwise, assume we're dealing with a process ID.
} else {
int pid = strtol(argv[1], NULL, 10);
if (!pid) {
printf("%s: argument must be a PID or %%jobid\n", argv[0]);
return;
}
j = getjobpid(jobs, pid);
if (!j) {
printf("(%s): No such process\n", argv[1]);
return;
}
}
// Send a SIGCONT signal to the entire process group of the process
// assigned to that job. This will restart a stopped process, performing
// the function associated with the `fg` command. (If the process is not
// stopped, the signal will be ignored.)
if (kill(-(j->pid), SIGCONT) == -1) unix_error("kill (SIGCONT) error");
// Set the job state and perform other actions, depending on which
// command was selected, `bg` or `fg`.
if (!strcmp(argv[0], "fg")) {
j->state = FG;
waitfg(j->pid); // Block until no longer a foreground job.
if (j->state == ST) return; // Don't delete a stopped job.
deletejob(jobs, j->pid); // Delete a finished foreground job.
} else {
j->state = BG;
// Print info for a background job.
printf("[%d] (%d) %s", j->jid, j->pid, j->cmdline);
}
}
waitfg()
Block until process pid
is no longer the foreground process. Get the job
with pid
and test its status periodically, until it’s no longer a foreground
job. (I am following the recommendation in the assignment hints that we use
sleep()
here, and waitpid()
in sigchld_handler()
.)
1
2
3
4
void waitfg(pid_t pid) {
struct job_t * j = getjobpid(jobs, pid);
while (j->state == FG) sleep(1);
}
sigchld_handler()
The kernel sends a SIGCHLD
to the shell whenever a child job terminates
(becomes a zombie), or stops because it received a SIGSTOP
or SIGTSTP
signal.
The handler reaps all available zombie children, but doesn’t wait for any
other currently running children to terminate.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
void sigchld_handler(int sig) {
int status;
pid_t pid;
// Invoke `waitpid()` with the arguments -1 (wait for ALL child
// processes), a local variable to store the process status, and
// the expression `WUNTRACED | WNOHANG`, which will detect stopped
// processes or zombie processes (processes that have terminated
// but have not yet been reaped) without blocking.
while ((pid = waitpid(-1, &status, WUNTRACED | WNOHANG)) > 0) {
// Handle a stopped process.
if (WIFSTOPPED(status)) {
// Get the job and set its status to `ST` (stopped).
struct job_t * j = getjobpid(jobs, pid);
j->state = ST;
// If you print the handler function's argument `sig` here,
// instead of `SIGTSTP`, you will print a different signal
// value than the reference implementation does in test #16.
// Using `SIGTSTP` instead of the argument `sig` here gives
// you the same behavior as the reference implementation, but
// you aren't catching the signal itself properly.
printf("Job [%d] (%d) stopped by signal %d\n", pid2jid(pid), pid, SIGTSTP);
}
// Return information about a job terminated by a signal, then
// delete it.
else if (WIFSIGNALED(status)) {
printf("Job [%d] (%d) terminated by signal %d\n", pid2jid(pid), pid, SIGINT);
deletejob(jobs, pid);
}
// If a job was terminated normally, just delete it.
else if (WIFEXITED(status)) {
deletejob(jobs, pid);
}
else unix_error("waitfg: waitpid error");
}
}
sigint_handler()
The kernel sends a SIGINT
to the shell whenver the user types Ctrl-c
at the
keyboard. Catch it and send it along to the foreground job.
Get the process ID of the foreground job and use kill()
to send
a SIGINT
signal to its entire process group.
1
2
3
4
5
void sigint_handler(int sig) {
pid_t pid = fgpid(jobs);
if (!pid) return;
if (kill(-pid, SIGINT) == -1) unix_error("kill (SIGINT) error");
}
sigtstp_handler()
The kernel sends a SIGTSTP
to the shell whenever the user types Ctrl-z
at the
keyboard. Catch it and suspend the foreground job by sending it a SIGTSTP
.
Get the process ID of the foreground job and use kill()
to send a SIGTSTP
signal to its entire process group.
1
2
3
4
5
6
void sigtstp_handler(int sig) {
pid_t pid = fgpid(jobs);
if (!pid) return;
if (kill(-pid, SIGTSTP) == -1) unix_error("kill (SIGTSTP) error");
}
Testing
Bash one-liner to compare output of all tests with output of tests of the reference implementation:
1
2
3
4
5
6
7
8
9
tests=("01" "02" "03" "04" "05" "06" "07" "08" \
"09" "10" "11" "12" "13" "14" "15" "16"); \
clear; \
for t in ${tests[@]}; \
do \
echo -e "***** TEST $t *****\n"; \
sdiff -I "^\.\/sdriver.*" -s <(make rtest$t) <(make test$t); \
echo -e "\n\n\n"; \
done
Entirety of shell code, including both provided and implemented functions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
#include <ctype.h>
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
// Misc constants
// ==============
#define MAXLINE 1024 // max line size
#define MAXARGS 128 // max args on a command line
#define MAXJOBS 16 // max jobs at any point in time
#define MAXJID 1<<16 // max job ID
// Job states
// ==========
// Job state transitions and enabling actions:
// - FG -> ST: ctrl-z
// - ST -> FG: fg command
// - ST -> BG: bg command
// - BG -> FG: fg command
// At most 1 job can be in the FG state.
#define UNDEF 0
#define FG 1 // running in foreground
#define BG 2 // running in background
#define ST 3 // stopped
// Global variables
// ================
extern char **environ; // defined in `libc`
char prompt[] = "tsh> "; // command line prompt (DO NOT CHANGE)
int verbose = 0; // if true, print additional output
int nextjid = 1; // next job ID to allocate
char sbuf[MAXLINE]; // for composing sprintf messages
struct job_t { // The job struct
pid_t pid; // job PID
int jid; // job ID [1, 2, ...]
int state; // UNDEF, BG, FG, or ST
char cmdline[MAXLINE]; // command line
};
struct job_t jobs[MAXJOBS]; // The job list
// Function prototypes
// ===================
// Functions to be implemented for this project.
void eval(char * cmdline);
int builtin_cmd(char ** argv);
void do_bgfg(char ** argv);
void waitfg(pid_t pid);
void sigchld_handler(int sig);
void sigtstp_handler(int sig);
void sigint_handler(int sig);
// Helper routines provided.
int parseline(const char * cmdline, char ** argv);
void sigquit_handler(int sig);
void clearjob(struct job_t * job);
void initjobs(struct job_t * jobs);
int maxjid(struct job_t * jobs);
int addjob(struct job_t * jobs, pid_t pid, int state, char * cmdline);
int deletejob(struct job_t * jobs, pid_t pid);
pid_t fgpid(struct job_t * jobs);
struct job_t * getjobpid(struct job_t * jobs, pid_t pid);
struct job_t * getjobjid(struct job_t * jobs, int jid);
int pid2jid(pid_t pid);
void listjobs(struct job_t * jobs);
void usage(void);
void unix_error(char * msg);
void app_error(char * msg);
typedef void handler_t(int);
handler_t *Signal(int signum, handler_t * handler);
// main()
// ======
int main(int argc, char ** argv) {
char c;
char cmdline[MAXLINE];
int emit_prompt = 1; // emit prompt (default)
// Redirect stderr to stdout (so that driver will get all output
// on the pipe connected to stdout).
dup2(1, 2);
// Parse the command line.
while ((c = getopt(argc, argv, "hvp")) != EOF) {
switch (c) {
case 'h': // print help message
usage();
break;
case 'v': // emit additional diagnostic info
verbose = 1;
break;
case 'p': // don't print a prompt
emit_prompt = 0; // handy for automatic testing
break;
default:
usage();
}
}
// Install the signal handlers
// These are the ones you will need to implement
Signal(SIGINT, sigint_handler); // ctrl-c
Signal(SIGTSTP, sigtstp_handler); // ctrl-z
Signal(SIGCHLD, sigchld_handler); // Terminated or stopped child
// This one provides a clean way to kill the shell
Signal(SIGQUIT, sigquit_handler);
// Initialize the job list
initjobs(jobs);
// Execute the shell's read/eval loop
while (1) {
// Read command line
if (emit_prompt) {
printf("%s", prompt);
fflush(stdout);
}
if ((fgets(cmdline, MAXLINE, stdin) == NULL) && ferror(stdin)) {
app_error("fgets error");
}
if (feof(stdin)) { // End of file (ctrl-d)
fflush(stdout);
exit(0);
}
// Evaluate the command line
eval(cmdline);
fflush(stdout);
fflush(stdout);
}
exit(0); // control never reaches here
}
// eval()
// ======
// Evaluate the command line that the user has just typed in
//
// If the user has requested a built-in command (quit, jobs, bg or fg)
// then execute it immediately. Otherwise, fork a child process and
// run the job in the context of the child. If the job is running in
// the foreground, wait for it to terminate and then return. Note:
// each child process must have a unique process group ID so that our
// background children don't receive SIGINT (SIGTSTP) from the kernel
// when we type ctrl-c (ctrl-z) at the keyboard.
//
void eval(char * cmdline) {
char * argv[MAXARGS]; // Holds result of `parseline(buf, arg)`
char buf[MAXLINE]; // Buffer for command line
int bg; // Foreground/background status
pid_t pid; // Process ID
// Setup for using `sigprocmask` to block SIGCHLD signals before
// forking.
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGCHLD);
// Parse `cmdline` to produce an argument array. `parseline()`
// detects the ampersand '&' character used to signify a
// background job and returns true (1) in that case, otherwise
// false (0). We assign that return value to our own local
// variable `bg`, which also indicates foreground or background
// status.
strcpy(buf, cmdline);
bg = parseline(buf, argv);
// Terminate on EOF.
if (argv[0] == NULL) return;
// Execute `builtin_cmd(argv)` and test its return status. If
// false (0), we're not dealing with a built-in shell command,
// so we need to create a job for this command line and a child
// process to execute it.
if (!builtin_cmd(argv)) {
// Block SIGCHLD signals before forking the child, to avoid a
// a race condition in which the child is reaped before the
// parent calls `addjob`.
if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1) {
unix_error("sigprocmask: error blocking SIGCHLD signals");
return;
}
// Now fork, creating a child process.
int pid_ret = (pid = fork());
if (pid_ret == -1) {
unix_error("fork error");
exit(0);
}
// If the child process was successfully created, invoke
// `execve()` to run the program invoked by the shell command
// line.
if (pid_ret == 0) {
// First, create a new process group whose group ID is
// identical to the child's PID, and put the child process
// in this new process group. We do this to prevent
// Ctrl-c from sending a SIGINT signal to the shell plus every
// process the shell has created. Instead, the SIGINT signal
// will be sent only to the process group containing the
// foreground job.
if (setpgid(0, 0) == -1) {
unix_error("setpgid error");
}
// Now we can run the program invoked by the shell command
// in our new child process. Test the return value so we
// notify the shell user when a non-existent command has
// been invoked.
if (execve(argv[0], argv, environ) == -1) {
printf("%s: Command not found\n", argv[0]);
exit(0);
}
}
// Add the job with the foreground/background status indicated
// by `parseline`.
addjob(jobs, pid, (bg ? BG : FG), cmdline);
// Now that the job has been added, the danger of a race
// condition has passed. We can unblock SIGCHLD signals,
// then manage the job as follows:
// - If job is a foreground job, wait for it to terminate.
// - If job is a background job, print its job and process IDs
// along with the string representing it as a command.
if (sigprocmask(SIG_UNBLOCK, &mask, NULL) == -1) {
unix_error("sigprocmask: error unblocking SIGCHLD signals");
}
if (!bg) waitfg(pid);
else printf("[%d] (%d) %s", pid2jid(pid), pid, cmdline);
}
return;
}
// parseline()
// ===========
// Parse the command line and build the argv array.
//
// Characters enclosed in single quotes are treated as a single
// argument. Return true if the user has requested a BG job, false if
// the user has requested a FG job.
//
int parseline(const char * cmdline, char ** argv) {
static char array[MAXLINE]; // holds local copy of command line
char *buf = array; // ptr that traverses command line
char *delim; // points to first space delimiter
int argc; // number of args
int bg; // background job?
strcpy(buf, cmdline);
buf[strlen(buf)-1] = ' '; // replace trailing '\n' with space
while (*buf && (*buf == ' ')) buf++; // ignore leading spaces
// Build the argv list
argc = 0;
if (*buf == '\'') {
buf++;
delim = strchr(buf, '\'');
} else {
delim = strchr(buf, ' ');
}
while (argc < MAXARGS-1 && delim) {
argv[argc++] = buf;
*delim = '\0';
buf = delim + 1;
while (*buf && (*buf == ' ')) buf ++ // ignore spaces
if (*buf == '\'') {
buf++;
delim = strchr(buf, '\'');
} else {
delim = strchr(buf, ' ');
}
}
if (delim) {
fprintf(stderr, "Too many arguments.\n");
argc = 0; //treat it as an empty line.
}
argv[argc] = NULL;
if (argc == 0) return 1; // ignore blank line
// should the job run in the background?
if ((bg = (*argv[argc-1] == '&')) != 0) argv[--argc] = NULL;
return bg;
}
// builtin_cmd()
// =============
// If the user has typed a built-in command then execute
// it immediately.
//
// Based on the model in CSAPP3E §8.4. `eval()` forks a process if
// the command is not a built-in command, so we need to return an
// integer value of 1 in the case of "jobs", "bg", and "fg".
//
int builtin_cmd(char ** argv) {
if (!strcmp(argv[0], "&")) return 1; // ignore singleton `&`
if (!strcmp(argv[0], "quit")) exit(0);
if (!strcmp(argv[0], "jobs")) {
listjobs(jobs);
return 1;
}
if (!strcmp(argv[0], "bg") || !strcmp(argv[0], "fg")) {
do_bgfg(argv);
return 1;
}
return 0; // if `argv` is not a built-in command
}
// do_bgfg()
// =========
// Execute the builtin bg and fg commands.
//
// First, since a job can be identifed by either a job ID or a process
// ID, we need to detect each format. Either ID will consist of string
// input from the shell command line, which we must convert to an
// integer. Once we have the job ID or process ID, we use `getjobjid()`
// or `getjobpid()` to retrieve the job from the jobs list, and `kill()`
// to restart any stopped jobs. Finally, we update the job state
// and perform other actions as appropriate.
//
void do_bgfg(char ** argv) {
struct job_t * j;
// If "fg" or "bg" is missing, print an error and return.
if (!argv[1]) {
printf("%s command requires PID or %%jobid argument\n", argv[0]);
return;
}
// If the argument begins with '%', it denotes a job ID.
if (argv[1][0] == '%') {
// Convert the string representing the job id to an integer.
int jid = strtol(argv[1] + 1, NULL, 10);
if (!jid) {
printf("%s command requires PID or %%jobid argument\n", argv[0]);
return;
}
// Retrieve the job from the jobs list.
j = getjobjid(jobs, jid);
if (!j) {
printf("%s: No such job\n", argv[1]);
return;
}
// Otherwise, assume we're dealing with a process ID.
} else {
int pid = strtol(argv[1], NULL, 10);
if (!pid) {
printf("%s: argument must be a PID or %%jobid\n", argv[0]);
return;
}
j = getjobpid(jobs, pid);
if (!j) {
printf("(%s): No such process\n", argv[1]);
return;
}
}
// Send a SIGCONT signal to the entire process group of the process
// assigned to that job. This will restart a stopped process, performing
// the function associated with the `fg` command. (If the process is not
// stopped, the signal will be ignored.)
if (kill(-(j->pid), SIGCONT) == -1) unix_error("kill (SIGCONT) error");
// Set the job state and perform other actions, depending on which
// command was selected, `bg` or `fg`.
if (!strcmp(argv[0], "fg")) {
j->state = FG;
waitfg(j->pid); // Block until no longer a foreground job.
if (j->state == ST) return; // Don't delete a stopped job.
deletejob(jobs, j->pid); // Delete a finished foreground job.
} else {
j->state = BG;
// Print info for a background job.
printf("[%d] (%d) %s", j->jid, j->pid, j->cmdline);
}
}
// waitfg()
// ========
// Block until process `pid` is no longer the foreground process.
// Get the job with `pid` and test its status periodically, until
// it's no longer a foreground job. (I am following the recommendation
// in the assignment hints that we use `sleep()` here, and `waitpid()` in
// `sigchld_handler()`.)
//
void waitfg(pid_t pid) {
struct job_t * j = getjobpid(jobs, pid);
while (j->state == FG) sleep(1);
}
// Signal handlers
// ===============
// sigchld_handler()
// -----------------
// The kernel sends a SIGCHLD to the shell whenever a child job terminates
// (becomes a zombie), or stops because it received a SIGSTOP or SIGTSTP signal.
// The handler reaps all available zombie children, but doesn't wait for any
// other currently running children to terminate.
//
void sigchld_handler(int sig) {
int status;
pid_t pid;
// Invoke `waitpid()` with the arguments -1 (wait for ALL child
// processes), a local variable to store the process status, and
// the expression `WUNTRACED | WNOHANG`, which will detect stopped
// processes or zombie processes (processes that have terminated
// but have not yet been reaped) without blocking.
while ((pid = waitpid(-1, &status, WUNTRACED | WNOHANG)) > 0) {
// Handle a stopped process.
if (WIFSTOPPED(status)) {
// Get the job and set its status to `ST` (stopped).
struct job_t * j = getjobpid(jobs, pid);
j->state = ST;
// If you print the handler function's argument `sig` here,
// instead of `SIGTSTP`, you will print a different signal
// value than the reference implementation does in test #16.
printf("Job [%d] (%d) stopped by signal %d\n", pid2jid(pid), pid, SIGTSTP);
}
// Return information about a job terminated by a signal, then
// delete it.
else if (WIFSIGNALED(status)) {
printf("Job [%d] (%d) terminated by signal %d\n", pid2jid(pid), pid, SIGINT);
deletejob(jobs, pid);
}
// If a job was terminated normally, just delete it.
else if (WIFEXITED(status)) {
deletejob(jobs, pid);
}
else unix_error("waitfg: waitpid error");
}
}
// sigint_handler()
// ----------------
// The kernel sends a SIGINT to the shell whenver the user types ctrl-c at the
// keyboard. Catch it and send it along to the foreground job.
//
// Get the process ID of the foreground job and use `kill()` to send
// a SIGINT signal to its entire process group.
//
void sigint_handler(int sig) {
pid_t pid = fgpid(jobs);
if (!pid) return;
if (kill(-pid, SIGINT) == -1) unix_error("kill (SIGINT) error");
}
// sigtstp_handler()
// -----------------
// The kernel sends a SIGTSTP to the shell whenever the user types ctrl-z at the
// keyboard. Catch it and suspend the foreground job by sending it a SIGTSTP.
//
// Get the process ID of the foreground job and use `kill()` to send a SIGTSTP
// signal to its entire process group.
//
void sigtstp_handler(int sig) {
pid_t pid = fgpid(jobs);
if (!pid) return;
if (kill(-pid, SIGTSTP) == -1) unix_error("kill (SIGTSTP) error");
}
// Helper routines
// ===============
// clearjob()
// ----------
// Clear the entries in a job struct.
void clearjob(struct job_t * job) {
job->pid = 0;
job->jid = 0;
job->state = UNDEF;
job->cmdline[0] = '\0';
}
// initjobs()
// ----------
// Initialize the job list.
void initjobs(struct job_t * jobs) {
int i;
for (i = 0; i < MAXJOBS; i++) clearjob(&jobs[i]);
}
// maxjid()
// --------
// Return the largest allocated job ID.
int maxjid(struct job_t * jobs) {
int i, max = 0;
for (i = 0; i < MAXJOBS; i++) {
if (jobs[i].jid > max) max = jobs[i].jid;
}
return max;
}
// addjob()
// --------
// Add a job to the job list.
int addjob(struct job_t * jobs, pid_t pid, int state, char * cmdline) {
int i;
if (pid < 1) return 0;
for (i = 0; i < MAXJOBS; i++) {
if (jobs[i].pid == 0) {
jobs[i].pid = pid;
jobs[i].state = state;
jobs[i].jid = nextjid++;
if (nextjid > MAXJOBS) nextjid = 1;
strcpy(jobs[i].cmdline, cmdline);
if (verbose) {
printf("Added job [%d] %d %s\n", jobs[i].jid, jobs[i].pid, jobs[i].cmdline);
}
return 1;
}
}
printf("Tried to create too many jobs\n");
return 0;
}
// deletejob()
// -----------
// Delete a job whose PID=pid from the job list.
int deletejob(struct job_t * jobs, pid_t pid) {
int i;
if (pid < 1) return 0;
for (i = 0; i < MAXJOBS; i++) {
if (jobs[i].pid == pid) {
clearjob(&jobs[i]);
nextjid = maxjid(jobs)+1;
return 1;
}
}
return 0;
}
// fgpid()
// -------
// Return PID of current foreground job, 0 if no such job.
pid_t fgpid(struct job_t * jobs) {
int i;
for (i = 0; i < MAXJOBS; i++) {
if (jobs[i].state == FG) return jobs[i].pid;
}
return 0;
}
// getjobpid()
// -----------
// Find a job (by PID) on the job list.
struct job_t * getjobpid(struct job_t * jobs, pid_t pid) {
int i;
if (pid < 1) return NULL;
for (i = 0; i < MAXJOBS; i++) {
if (jobs[i].pid == pid) return &jobs[i];
}
return NULL;
}
// getjobjid()
// -----------
// Find a job (by JID) on the job list.
struct job_t * getjobjid(struct job_t * jobs, int jid) {
int i;
if (jid < 1) return NULL;
for (i = 0; i < MAXJOBS; i++) {
if (jobs[i].jid == jid) return &jobs[i];
}
return NULL;
}
// pid2jid - Map process ID to job ID
int pid2jid(pid_t pid) {
int i;
if (pid < 1) return 0;
for (i = 0; i < MAXJOBS; i++) {
if (jobs[i].pid == pid) return jobs[i].jid;
}
return 0;
}
// listjobs()
// ----------
// Print the job list.
void listjobs(struct job_t * jobs) {
int i;
for (i = 0; i < MAXJOBS; i++) {
if (jobs[i].pid != 0) {
printf("[%d] (%d) ", jobs[i].jid, jobs[i].pid);
switch (jobs[i].state) {
case BG:
printf("Running ");
break;
case FG:
printf("Foreground ");
break;
case ST:
printf("Stopped ");
break;
default:
printf("listjobs: Internal error: job[%d].state=%d ",
i, jobs[i].state);
}
printf("%s", jobs[i].cmdline);
}
}
}
// usage()
// -------
// Print a help message.
void usage(void) {
printf("Usage: shell [-hvp]\n");
printf(" -h print this message\n");
printf(" -v print additional diagnostic information\n");
printf(" -p do not emit a command prompt\n");
exit(1);
}
// unix_error()
// ------------
// Unix-style error routine.
void unix_error(char * msg) {
fprintf(stdout, "%s: %s\n", msg, strerror(errno));
exit(1);
}
// app_error()
// -----------
// Application-style error routine.
void app_error(char * msg) {
fprintf(stdout, "%s\n", msg);
exit(1);
}
// Signal()
// --------
// Wrapper for the sigaction function/
handler_t * Signal(int signum, handler_t * handler) {
struct sigaction action, old_action;
action.sa_handler = handler;
sigemptyset(&action.sa_mask); // block sigs of type being handled
action.sa_flags = SA_RESTART; // restart syscalls if possible
if (sigaction(signum, &action, &old_action) < 0) unix_error("Signal error");
return (old_action.sa_handler);
}
// sigquit_handler()
// -----------------
// The driver program can gracefully terminate the child shell by sending it a
// SIGQUIT signal.
void sigquit_handler(int sig) {
printf("Terminating after receipt of SIGQUIT signal\n");
exit(1);
}